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The area under the curve (AUC) of the receiver operating characteristic (ROC) has become

a dominant tool in evaluating the accuracy of models predicting distributions of species.

ROC has the advantage of being threshold-independent, and as such does not require deci-

sions regarding thresholds of what constitutes a prediction of presence versus a prediction of

absence. However, we show that, comparing two ROCs, using the AUC systematically under-

values models that do not provide predictions across the entire spectrum of proportional

areas in the study area. Current ROC approaches in ecological niche modeling applica-

tions are also inappropriate because the two error components are weighted equally. We
cological niche model

odel evaluation

eceiver operating characteristic

rea under curve

mission error

recommend a modification of ROC that remedies these problems, using partial-area ROC

approaches to provide a firmer foundation for evaluation of predictions from ecological

niche models. A worked example demonstrates that models that are evaluated favorably by

traditional ROC AUCs are not necessarily the best when niche modeling considerations are

incorporated into the design of the test.

Here, we point out two sources of problems in ROC analyses
he tools and techniques of ecological niche modeling (ENM)
nd the related ideas of species distribution modeling (SDM)
ave seen an impressive increase in activity in recent years

Guisan and Zimmermann, 2000; Soberón and Peterson, 2004;
raújo and Guisan, 2006). Many facets of these tools and

heir application have been examined in detailed analyses
Stockwell and Peterson, 2002a,b, 2003; Anderson et al., 2003;
earson and Dawson, 2003; Araújo et al., 2005a,b; Guisan and
huiller, 2005; Guisan et al., 2006; Pearson et al., 2007) that have
reatly clarified the conditions of their use. However, in spite
f such attention, the issue of how to evaluate predictions of
hese models statistically remains an area that is incompletely
nd unsatisfactorily resolved (Fielding and Bell, 1997; Araújo
nd Guisan, 2006; Guisan et al., 2006; Lobo et al., 2007).
In recent publications, statistical evaluations of niche and
istribution model predictions have generally been based on
eceiver operating characteristic (ROC) analyses (DeLong et
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al., 1988), as exemplified by a recent, large-scale model com-
parison (Elith et al., 2006) and many similar studies. Spatial
predictions can present errors of omission (false negatives,
leaving out known distributional area) and errors of com-
mission (false positives, including unsuitable areas in the
prediction). ROC analysis involves plotting sensitivity (i.e.,
proportion of known presences predicted present, = 1 − false
negative rate) against 1 − specificity (i.e., proportion of known
absences predicted present, = false positive rate; Fig. 1). The
area under the ROC curve (AUC) is then compared against null
expectations [the area under the line linking the origin with
upper right corner of the graph (1,1), = 0.5] either probabilisti-
cally or via bootstrap manipulations.
that consistently favor certain kinds of algorithms over others.
The first limitation of ROCs derives from the fact that certain
algorithms span broad spectra of possible commission errors,

mailto:town@ku.edu
dx.doi.org/10.1016/j.ecolmodel.2007.11.008
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whereas others are restricted to smaller ranges—we show that
ROCs consistently favor the former over the latter. The sec-
ond limitation derives from the very different meanings of
“absence” in the context of ENM versus SDM; as currently used,
ROC analyses do not distinguish between the two, and, again,
consistently favor model predictions oriented toward one type
of analysis (SDM) over the other (ENM). We present a modifica-
tion of the traditional ROC approach that takes steps towards
resolving these two problems.

1. The (simple part of the) problem:
unequal span of model predictions

A diverse set of inferential tools has been applied to the
challenge of estimating niches and predicting geographic dis-
tributions of species (Elith et al., 2006; Peterson, 2006), ranging
from simple range rules to complex neural networks, genetic
algorithms, maximum entropy, and multivariate regression
algorithms. The outputs from these different techniques have
different characteristics: most relevant here is that different
techniques may span very different ranges of predicted area
of presence of a species (e.g., range rules predict one or a few
thresholds, whereas multivariate regression approaches pro-
duce prediction across most of the spectrum of probabilities
from 0 to 1). These differences, however, have implications
for how AUC scores are calculated, because AUC calculations
assume that 1 − specificity spans the entire range [0,1], even
though model predictions may not span that whole range.
Special modifications to the approach are required for devel-
opment of AUC comparisons in partial ROCs that span only
a subset of the full spectrum of areal predictions (Jiang et al.,
1996; Dodd and Pepe, 2003).

ROC can be applied directly to evaluation of SDM predic-
tions (Fielding and Bell, 1997; Fawcett, 2003; Phillips et al.,
2006), although even this functionality is not above question
(Lobo et al., 2007). A SDM produces a prediction value related
(sometimes equal) to the probability that a species is present
in a cell. By assigning thresholds, the continuous scores can
be turned into binary predictions, which can be correct or
incorrect, producing a contingency table called the “confusion
matrix” (see Table 1). One confusion matrix exists per thresh-

old value, and the four elements of the matrix can be used to
calculate error characteristics.

In a conventional ROC, the proportion of true positives
[a/(a + c)], equivalent to the sensitivity (or absence of omis-

Table 1 – Schema of a confusion matrix, in which
predicted presences and absences are related to their
known status as observed presence or absence

Observed

Present Absent

Predicted
Present a b
Absent c d

See text for explanation.
2 1 3 ( 2 0 0 8 ) 63–72

sion error), is plotted against the proportion of false positives
[b/(b + d)], which in turn is equivalent to 1 − specificity or the
commission error. The plot in ROC space of sensitivity ver-
sus 1 − specificity displays how well an algorithm classifies
instances as the threshold changes. In SDM and ENM appli-
cations, threshold changes mean that the area predicted as
present also changes. Important sectors of this ROC space are
the origin (0,0), where the algorithm never falsely identifies
absences, but it fails to identify every known presence (which
is useless); the top right corner (1,1), where the algorithm
identifies every true presence correctly, but misidentifies all
absences as positives (also useless, although in a different
way). Finally, in the top left corner (0,1), the algorithm cor-
rectly identifies all true positives and never misclassifies a true
absence as a presence. Therefore, the regions in ROC space
near the (0,1) corner represent model predictions that success-
fully identify true presences and seldom misidentify absences
as presences.

Now consider the behavior of a random classifier. Such an
algorithm always randomly identifies as present a fixed pro-
portion p of any set of instances, a function of the proportional
area predicted present. This prediction rate is represented by
the straight line joining the points (0,0) and (1,1). A random
classificatory algorithm will select as present only a fraction
p of true presences, giving a value of p on the sensitivity axis
(y-axis). It will also select (wrongly) a fraction p of absences as
presences, giving the same value of p on the x-axis. Therefore,
as p varies, a line in which true presences = false presences is
traced (Fig. 1).

The above ideas can be applied directly to situations in
which true presences and true absences are known, such as
the typical SDM problem (Guisan and Zimmermann, 2000).
By varying the threshold at which the score of an algorithm
is regarded as a presence, a curve in ROC space is traced
(Fig. 1); elevation of this curve above the straight line of ran-
dom expectation is a measure of the discrimination capacity
of the algorithm (i.e., its capacity to classify correctly true pres-
ences and true absences) (Fielding and Bell, 1997; Guisan and
Zimmermann, 2000). In an ENM context, however, the situa-
tion is slightly different, but different in important ways (see
below).

In comparing the performance of different algorithms, in
either a SDM or ENM context, a problem exists that – to our
knowledge – has not been discussed previously in the litera-
ture on ENM or SDM: that some algorithms span the entire
range of possible commission errors, while others cover only
comparatively small regions of the overall ROC plot, either by
design or by the intrinsic operation of the algorithm. In other
words, while one algorithm may predict responses from 0 to
100% of false positives, another may predict only in the range
of, for example, 40–90% (illustrated in Fig. 2 for Maxent, which
predicts across the whole spectrum of areas, compared with
GARP, which predicts only at the broader end of the spectrum,
i.e., above ∼60%; details of methodologies for model genera-
tion are provided below in the worked example). Note that the
x-axis differs from that of a conventional ROC curve, an issue

that will be discussed in detail below.

In practice, the ROC AUC is calculated based on a series
of trapezoids (Fawcett, 2003), with the curve in essence “con-
necting the dots” in representing the different thresholds of
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Fig. 1 – Summary of new recommendations for receiver operating characteristic (ROC) analysis in niche modeling. Upper left
hand panel: traditional ROC approach, comparing the AUC of the test curve with 0.5, which is the AUC of the null
expectation curve. Upper right hand panel: comparison of two curves, and illustration of how the user-chosen error
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olerance E identifies different critical area thresholds for the
hat would be used to characterize each of the two curves.

he prediction. In the example in Fig. 2, Maxent has an AUC of
.72 (ratio of observed to null expectations = 1.44), but GARP an
UC of only 0.63 (ratio = 1.26; Table 1)—the difference obtained
ecause the first point of the GARP curve is automatically
onnected by a straight line to the origin. This procedure
n effect penalizes algorithms with ROC curves that do not
egin at or near the origin. In other words, in the example in
ig. 2, since GARP only predicts relatively broad geographic
reas that have high rates of prediction of true presences
= low omission error) and does not make predictions at lower
hresholds that would have higher omission errors, its ROC
urve is defined only within a subset of possible areas. In
his sense, we can now distinguish between two types of poor
erformance in ROC analyses: ROC curves that are genuinely

ower and closer to the line of no information (AUC = 0.5), ver-
us those that have artificially low AUC scores because they
o not predict across the whole spectrum of proportional
rea predicted present. These complications are far from lim-

ted to GARP, however—BIOCLIM and related algorithms offer
nly a few thresholds of prediction, and many regression-
ased approaches have limited ranges of probabilities
redicted.
curves. Lower panels: illustration of the AUC comparisons

2. Niche modeling considerations

The above is an artifactual problem that can affect any ROC
analysis applied to analyses of different extents in predic-
tions of proportional areas (Jiang et al., 1996; Dodd and Pepe,
2003). Another more subtle problem affects ROC analyses in
ENM applications. Previous contributions have discussed dif-
ferences between models of species’ distributions and models
of species’ ecological niches (Soberón and Peterson, 2004, 2005;
Peterson, 2006). Although seemingly a minor distinction, these
differences have important implications for how model pre-
dictions should be evaluated.

Models of ecological niches are designed explicitly to pre-
dict potential areas of distribution, and therefore are generally
broader than actual distributional areas (Hirzel et al., 2002;
Soberón and Peterson, 2005; Phillips et al., 2006). Often, ENM
applications are based on presence information only, owing

quite simply to the practical lack of absence information,
but even if absence data were to be available, they would
have to be data regarding absence from the potential distribu-
tional area. As a consequence, data on absences of species
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Fig. 2 – Summary of characteristics of three example model predictions. Top panel: area predicted present across the
spectrum of thresholds for each model, based on a 3-threshold moving window. The bottom panel approximates closely a
traditional receiver operating characteristic model, except that the x-axis is measured as proportion of the study area
predicted present instead of being measured as success in predicting absence points; for simplicity, only GARP and Maxent
results are shown in this panel.
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re of dubious utility in the process of modeling ecological
iches, unless some approach for generating more realistic
bsence data is used (Lobo et al., 2006). This point is easily
nderstandable if one considers invasive species: if one had
een modeling the species’ ecological niche a few decades
rior to its introduction in the novel region, one would have
ounted its future adventive distributional area as absence.
his area was actually quite within the ecological niche
imensions of the species, as was demonstrated by the later

nvasion.
As such, unless obtained somehow from the potential dis-

ribution (e.g., if annual plants were seeded experimentally
cross the region), absence data should not be employed in
valuating model quality in ENM applications. For this reason,
nd following previous observations by Phillips et al. (Phillips
t al., 2006) that the logic of ROC allows for more general
artitioning of instances than “presences” versus “absences,”
e follow a modified ROC procedure that disposes entirely
f absence data. Rather, we calculate the values used as
he x-axis as the proportion of the overall area predicted as
resent, rather than using commission error calculated based
n vaguely defined (and often unavailable) data summarizing
absences” (Phillips et al., 2006).

Since absence data have been omitted and the
− specificity axis changed to proportion of area predicted
s present, new interpretations are needed. In previous
nalyses, in which niche models were evaluated via expert
pinion (Anderson et al., 2003), it was shown that omission
rror characteristics are more important in distinguishing
ood from bad models than are commission error consider-
tions. Put simply, in a niche-modeling framework, a model
hat errs by omitting known points of presence is more
eriously flawed than one that predicts areas not known to
e inhabited (Raxworthy et al., 2003). Among models that
verpredict, what is more, some ‘overprediction’ is in disjunct
reas that likely represent areas inaccessible to the species
or reasons unrelated to landscape suitability (e.g., historical
ispersal limitations, speciation events, interspecific interac-
ions) (Peterson et al., 1999; Wiens, 2004; Wiens and Graham,
005): these areas do not represent model prediction error,
ut rather offer an accurate depiction of the spatial extent
f habitable conditions for the species. Other models may
econstruct overly broad suites of environmental conditions
s suitable for the species—these models genuinely fail in
econstructing the ecological niche of the species because
hey do not distinguish effectively between potential presence
nd absence. Distinguishing between these two possibilities
predicting areas not inhabited for nonecological reasons
ersus predicting an overly broad suite of environmental
onditions) represents an important ongoing priority in the
evelopment of this field, and depends in large part on being
ble to decide which models are “better” than others.

. Modified ROC approach
iven the above considerations, we outline a series of mod-
fications to ROC analysis that make it consistent with the
haracteristics of ENM applications, building on previous work
ith partial-area ROC analyses, as follows. (1) The x-axis is not
2 1 3 ( 2 0 0 8 ) 63–72 67

calibrated based on successful versus unsuccessful prediction
of absence points, but rather on the proportion of the overall
area under consideration predicted as present. This change
follows the reasoning that Phillips et al. (Phillips et al., 2006)
used in substituting “background points” for “absence points”
in their analyses of the Maxent algorithm. (2) AUC calculations
are restricted to the domain of prediction of the algorithm,
and do not extend to intervals along the x-axis in which an
algorithm does not make predictions. Finally, (3) we restrict
AUC calculations to the domain within which omission error
is sufficiently low as to meet user-defined requirements of pre-
dictive ability (Pepe, 2000). In this section, we develop these
latter ideas in detail, and then illustrate the differences in a
worked example.

We begin by defining a user-selected parameter E, which
refers to the amount of error admissible along the true-
positives axis, given the requirements and conditions of
the study. This parameter refers to how much omission
error is acceptable—it might be set at E = 0 in applications
in which highest-quality occurrence data are used, or it
might be higher (perhaps 5–20%) when the occurrence data
are known to include certain amounts of error (e.g., when
using “found” data). Hence, the researcher considers the
error characteristics of the data that will be used to test
the model predictions and the needs of the particular study,
and chooses a value of E appropriate to the question at
hand.

Fig. 1 illustrates these ideas graphically: the upper left-
hand panel depicts a typical ROC analysis, in which a curve
representing some model prediction has an AUC = 0.8, which
is then compared to the AUC for a line of null expectations
(= 0.5) and significance values are obtained either by combina-
torial probability calculations or by bootstrapping (DeLong et
al., 1988; Vida, 2006). The upper right-hand panel shows two
such curves, one of which (curve A) is clearly ‘better’ than the
other (curve B), in that it is more elevated from the line of null
expectations.

In our proposed modification, the line defined by 1 − E on
the vertical axis is intersected with the two ROC curves, and
the projection of each to the x-axis is used to identify key
area thresholds for the models, in this case xA and xB (Fig. 1).
The lower 2 panels of Fig. 1 show the AUC comparisons for
the ROC curves that would be used in our modified compar-
isons. In each, we consider only the portion of the ROC curve
that lies within the predictive range of the modeling algo-
rithm and within the range of acceptable models in terms
of omission error (1 − E to 1). Also in each, the null expecta-
tions of AUC are <0.5 because only part of the full range of
proportional areas predicted present is included in the calcu-
lations. The area under the ROC curve for each model can then
be calculated empirically as a series of trapezoids (DeLong et
al., 1988; Burden and Faires, 2005). Given both the change in
the definition of the x-axis and the now-variable AUC for the
null expectation, we now express ROC results as ratios of the
area under the observed curve to the area under the trape-
zoid defined by the random line and the interval x (or x )
A B

to 1. This value departs from unity as the model’s ROC curve
improves with respect to random expectations, and compar-
isons of model ROC AUCs with null expectations must be
achieved by means of bootstrapping.
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Fig. 3 – Occurrence data used in the example discussed in the text: black and white points are occurrences of Mourning
Dove (Zenaida macroura) drawn from the North American Breeding Bird Survey (1991–2000). Models were built based on the

on t

interesting contrasts with the other two algorithms.
points in the off-diagonal quadrants, and were tested based

4. Worked example

4.1. Methods

We use here an example analysis drawn from a recent compar-
ative study (Peterson et al., 2007). As full details are provided in
that publication, and given that the points made herein are not
specific to any particular methodology, we here only provide
a sketch of the methods that were employed. We based this
example on Mourning Dove (Zenaida macroura) occurrence data
drawn from the North American Breeding Bird Survey (BBS)
(Sauer et al., 2001). To assure that occurrences used in anal-
yses represent reasonably stable populations, we used only
BBS survey routes on which the species had been detected
in ≥8 years in 1991–2000; overall, 1202 presence points were
available for the analyses.

To challenge the ENM algorithms to predict into broad
unsampled areas (a niche-modeling challenge), we separated
available occurrence points into quadrants based on whether
their coordinates fell above or below the median longitude and
median latitude of occurrence localities. Henceforth, we refer
to the NW and SE quadrants as ‘on-diagonal,’ and the NE and
SW pair of quadrants as ‘off-diagonal’ (Fig. 3); we trained mod-
els based on off-diagonal quadrants (582 points) and tested
them using the independent occurrence points in the on-
diagonal quadrants (620 points) (Peterson and Shaw, 2003); this
manipulation challenges modeling algorithms to predict into
unsampled regions, rather than simply interpolating or filling
gaps in a densely sampled landscape. It is important to note

that all aspects of model development (including, e.g., best
subsets filtering in GARP) (Anderson et al., 2003) were carried
out on one pair of quadrants, and testing and model evaluation
in the other pair of quadrants only.
he points in the on-diagonal quadrants.

We characterized North American (24.3–76.5◦N, 52.0–
169.5◦W) environments based on 19 biologically meaning-
ful climate parameters drawn from the 10′ WorldClim data
set (Hijmans et al., 2005), supplemented with information on
topographic features summarized in four additional raster
data layers (elevation, slope, aspect, compound topographic
index) from the 1 km resolution Hydro-1K digital elevation
model data set (USGS, 2001). All data sets were resampled
to 10′ resolution to reflect the spatial accuracy of the occur-
rence data; the dimensionality of the environmental data was
reduced by means of principal components analysis (PCA) to
create new axes that summarized variation in fewer (indepen-
dent) dimensions (Peterson et al., 2007). We retained the first
11 components, which together explained >99% of the overall
variation in environmental parameters.

Several approaches have been used to approximate species’
ecological niches (Segurado and Araújo, 2004), as exemplified
by a recent broad comparative study of model performance
(Elith et al., 2006). Here, for the purpose of illustration, we com-
pared three methods: one that performed relatively poorly in
the Elith et al. (2006) study, the Genetic Algorithm for Rule-set
Prediction (GARP) (Stockwell, 1999; Pereira, 2002), versus one
of the top performers, a maximum entropy (Maxent) approach
(Phillips et al., 2006). Also included was the Minimum Distance
algorithm (OpenModeller1, version 0.1; hereafter MinDist),
which is equivalent to the simplest manifestation of DOMAIN,
but based on Euclidean distances instead of on the Gower
metric (Carpenter et al., 1993), as this method presents some
GARP models were developed using a desktop version
that permits flexibility in model development (Pereira, 2002).

1 http://openmodeller.sourceforge.net/.

http://openmodeller.sourceforge.net/
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Fig. 4 – Illustration of receiver operating characteristic (ROC)
curves at different thresholds of E, the user-defined error
tolerance. E = 100 is equivalent to the traditional ROC
analysis, but the lower two panels show E = 5 and 1. The
point is that the relationships between the curves change
e c o l o g i c a l m o d e l l i

n GARP, occurrence points from the pair of quadrants on
hich models are to be trained are divided randomly into

raining and “extrinsic test data” sets; the former is again
ivided evenly into “training data” (for model rule develop-
ent) and “intrinsic test data” sets (for model rule evaluation

nd refinement). GARP works in an iterative process of rule
election, evaluation, testing, and incorporation or rejection:
rst, a method is chosen from a set of possibilities, and then

s applied to the training data and a rule developed; rules may
volve by a number of means (e.g., truncation, point changes,
rossing-over among rules) to maximize predictivity. Predic-
ive accuracy is then evaluated independent points resampled
rom the intrinsic test data, and change in predictive accuracy
rom one iteration to the next is used to evaluate whether a
articular rule should be incorporated into the model. To force
ARP models to be general, and to minimize overfitting, fol-

owing procedures in all recent GARP applications, we used
he best subsets procedure (Anderson et al., 2003). We then
ummed the resulting 100 grids to create a surface summariz-
ng model agreement, with values ranging 0–100 as integers.

Maxent models were developed using software described
nd tested in detail in recent publications (Phillips et al.,
004, 2006). Maxent focuses on fitting a probability distribu-
ion for occurrence of the species in question to the set of
ixels across the study region, based on the idea that the
est explanation for unknown phenomena will maximize the
ntropy of the probability distribution, subject to the appro-
riate constraints. In the case of modeling ecological niches
f species, these constraints consist of maintaining the dif-
erence between the mean values of the variable distributions
redicted by the algorithm and the observed means always
maller than a “regularization parameter,” ˇ (Phillips et al.,
004, 2006). We used default parameters for Maxent models
i.e., no random subsampling, regularization multiplier = 1500

aximum iterations, 10,000 background points, convergence
imit = 10−5). Given the real-number nature of Maxent predic-
ions, and given the much-greater ease of manipulation of
nteger grids, we imported results into ArcView as floating-
oint grids, multiplied them by 100, and converted them to

nteger grids for further analysis.
Finally, we estimated niche models using the very simple

inDist algorithm. Here, for each pixel in the landscape, the
uclidean distance in a normalized environmental space is
alculated to each known occurrence point. The minimum
f this set of distance measures is assigned as the predicted
alue of the pixel in question. Although a maximum distance
arameter can be set to eliminate very large distances from
onsideration, we did not make any such assumptions, and
ather allowed each pixel in the landscape to be assigned a
ontinuous variable that indicates similarity to known occur-
ences of the species.

We summarized these three models in various manners
hat relate to ROC analyses, all based solely on independent
esting points from the quadrants that were not used to train
he models. In particular, at each predictive threshold, we
alculated sensitivity as 1 − omission error, the latter mea-

ured based on the independent testing data from the other
wo quadrants of the species’ distribution (Fig. 3). We calcu-
ated AUCs using the trapezoid method (Burden and Faires,
005), and present our AUC comparisons as the ratio of the

as one focuses on the lower-omission models instead of
the whole spectrum of thresholds.
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Table 2 – Summary of statistics describing receiver operating characteristic curves for three modeling algorithms
(MinDist, GARP, Maxent) at each of three values of E, the threshold of acceptable omission error (MinDist statistics only
presented for two E values, for reasons explained in the text)

MinDist GARP Maxent

E = 100 E = 5 E = 100 E = 5 E = 1 E = 100 E = 5 E = 1

Minimum 1.406 1.048 1.248 1.119 1.080 1.439 0.982 0.953
Maximum 1.500 1.130 1.304 1.183 1.122 1.539 1.179 1.118
Mean 1.457 1.093 1.273 1.146 1.087 1.488 1.132 1.060
Standard deviation 0.020 0.018 0.010 0.014 0.007 0.018 0.049 0.041
Number of replicates ≤ 1 0 0 0 0 0 0 18 25
P 9.8 × 10−114 2.7 × 10−7 1.0 × 10−174 8.1 × 10−25 8.2 × 10−34 1.3 × 10−156 0.0032 0.0736

Values presented are AUC ratios (minimum, maximum, mean, and standard deviation) across 200 bootstrap replicates, the number of bootstrap
is ≤
replicates falling at or below unity, and the probability that the mean

standard deviation.

model AUC to the null expectation described above (referred
to henceforth as “AUC ratios”). Bootstrapping manipulations to
permit evaluation of statistical significance of AUCs (as com-
pared with null expectations) were achieved by resampling 290
test points (50% of the total test points available) with replace-
ment 200 times from the overall pool of testing data in S-Plus
(version 7); one-tailed significance of differences in AUC from
the line of null expectations was assessed both via fitting a
standard normal variate (the z-statistic) and calculating the
probability that the mean AUC ratio is ≤1, and separately by
counting the number of bootstrap replicates with AUC ratios
of ≤1.

4.2. Application

We developed modified ROC curves for each of the three model
outputs at each of three values of E: 100% (in which the user
accepts models across the entire spectrum of areas predicted
as present, equivalent to the traditional ROC application), 5,
and 1% (Fig. 4, Table 2). As mentioned above, at E = 100%, Max-
ent clearly outperformed GARP, as did MinDist. However, it is
clear in Fig. 4 that much of this difference springs from the fact
that the GARP model makes no predictions of less than ∼65%
of the study area: the chord drawn from that point on the graph
to the origin leaves out much of the area included under the
Maxent and MinDist curves. AUC ratios were 1.46 for MinDist
and 1.49 for Maxent, but only 1.27 for GARP, although all three
were significantly elevated above the line of null expectations
(bootstrap manipulation, all P � 0.05; Table 1).

At E = 5%, however, the relative positions of the curves shift.
Ignoring the lower part of the curves (corresponding to model
thresholds that omit more than the user-stated tolerance),
now Maxent and GARP are the higher curves, and MinDist is
considerably lower (Fig. 4, Table 2). AUC ratios were highest
for Maxent and GARP (1.13 and 1.15, respectively), and lower
for MinDist (1.09). Although all three were statistically sig-
nificantly better than null expectations using the z-statistic,
Maxent did not achieve statistical significance based on the
simpler counts of numbers of replicates with AUC ratios of > 1

(Table 2). It is worthy of note that MinDist provides predic-
tions only up to 84.8% of the study area, and so the region
between that value and unity along the x-axis was filled by a
straight line; the incomplete trace of the ROC curve provided
1 based on a standard normal variate associated with the mean and

by MinDist is unlikely to account for its poor performance in
the partial-area AUC calculation, and we retain it in this exam-
ple for full comparability with the other two methods. Full
implementation of the methodology we present may wish to
limit comparisons in this region of the graph as well.

Finally, at E = 1%, MinDist provided no predictions in this
interval (Fig. 4), and so was excluded from calculations. GARP
had an AUC ratio of 1.09, as compared with Maxent’s 1.06.
While the GARP AUC was significantly higher than null expec-
tations by both measures, the Maxent AUC ratio was ≤ 1 in
12% of the bootstrap replicates, and the z-statistic yielded a
P = 0.074, indicating that the Maxent curve was not signifi-
cantly elevated above the null expectations (Table 2). Hence,
models that appeared most accurate in their predictions at
E = 100 were not the most accurate when model tests were
restricted to the region of interest in the niche modeling exer-
cise.

5. Discussion and conclusions

We emphasize that the purpose of this contribution is not to
establish that any niche modeling method is better or worse
than any other method. In fact, we considered removing mod-
eling method names from the manuscript and replacing them
with “X,” “Y,” and “Z,” to focus readers’ attention on the key
points. In particular, we assert that currently accepted model
evaluation techniques are not adequate for niche modeling
applications, and can yield inaccurate and inappropriate con-
clusions in many cases. This paper presents a first set of steps
towards remedying these failings.

A recent broad comparison (in which two of the authors
of this paper participated) compared 14 modeling methods,
and identified a suite of methods with particularly good
predictive abilities that included Maxent (Elith et al., 2006).
This large-scale comparison was nonetheless designed as an
SDM (distribution-modeling) exercise, and as such included
absence data as an integral element in model testing. The
three measures of model predictivity employed (the custom-

ary ROC analyses, a kappa statistic, and a correlation-based
procedure) all balance correct predictions of presences and
absences, measuring the ability of an algorithm to discrim-
inate between sites where a species is present and those
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here it is absent (Elith et al., 2006). However, as demonstrated
bove, traditional ROC approaches can identify a method as
ighly accurate when the method in fact is inferior in the
ange of predictive thresholds that is likely to be of inter-
st in niche modeling exercises (this point indicates that part
f the variation among models in the study in question is
rtifactual, regardless of whether the application is one of
DM or one of ENM). Furthermore, we point out that many
ecent applications of these methods are explicitly ENM (niche-

odeling) applications (Anderson et al., 2002; Pearson et al.,
002; Graham et al., 2004; Araújo et al., 2005a; Thuiller et al.,
005; Wiens and Graham, 2005), so the customary ROC analy-
es should be regarded with caution in these cases.

The evaluation methodology outlined in this paper
chieves several of our goals. First, it removes the emphasis
n absence data, which in niche-modeling applications can
e positively misleading (Peterson, 2006). Second, it empha-
izes the key role of omission error in evaluating niche model
redictivity (Anderson et al., 2003). Finally, we follow a previ-
us suggestion in a very different application of ROC analysis
hat analyses may best be limited to subsectors of the ROC
pace when certain portions of that space are not directly
elevant to applications of interest (Jiang et al., 1996; Pepe,
000; Dodd and Pepe, 2003)—in niche modeling, this modifica-
ion allows the user to set bounds on the types of predictions
hat are to be considered (Pepe, 2000; Dodd and Pepe, 2003). A
esearcher interested in evaluating the invasive potential of a
pecies would almost certainly be disappointed with a method
hat performs well at thresholds that have associated omis-
ion errors of >50%! Taking the intended uses of the model
nto account, as well as the error-related characteristics of the
nput data, is an important refinement to model evaluation
pproaches.

Clearly, much work remains in the development of these
ethodologies. In reality, limits both to the sensitivity and the

alse-positive axes may be desirable (Jiang et al., 1996; Dodd
nd Pepe, 2003). In our modified approach, limiting the fraction
f total area that an algorithm is allowed to predict (the over-
rediction) may be biologically sensible. This restriction would
reate partial ROC curves, limited on one side by the minimum
ensitivity acceptable, and on the other by the maximum over-
rediction that is tolerable. When more experience in the use
f our modified approach is gathered, development of a broad,
omparative study parallel to the previous (distribution mod-
ling) study (Elith et al., 2006), but based on niche modeling
deas, would be particularly instructive. Because the approach
e present here is distinct in several ways from conventional
OC analysis, the probabilistic interpretations of ROC scores

Fawcett, 2003) and its relations with the Mann–Whitney test
ill need to be reassessed. Finally, once the final form of the
ethodology for partial-ROC applications to predictions of

pecies’ geographic distributions is clear, developing program
ode to permit easy implementation would be desirable.
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