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Abstract

The use of statistical models to predict the likely occurrence or distribution of species is becoming an increasingly
important tool in conservation planning and wildlife management. Evaluating the predictive performance of models
using independent data is a vital step in model development. Such evaluation assists in determining the suitability of
a model for specific applications, facilitates comparative assessment of competing models and modelling techniques,
and identifies aspects of a model most in need of improvement. The predictive performance of habitat models
developed using logistic regression needs to be evaluated in terms of two components: reliability or calibration (the
agreement between predicted probabilities of occurrence and observed proportions of sites occupied), and discrimina-
tion capacity (the ability of a model to correctly distinguish between occupied and unoccupied sites). Lack of
reliability can be attributed to two systematic sources, calibration bias and spread. Techniques are described for
evaluating both of these sources of error. The discrimination capacity of logistic regression models is often measured
by cross-classifying observations and predictions in a two-by-two table, and calculating indices of classification
performance. However, this approach relies on the essentially arbitrary choice of a threshold probability to determine
whether or not a site is predicted to be occupied. An alternative approach is described which measures discrimination
capacity in terms of the area under a relative operating characteristic (ROC) curve relating relative proportions of
correctly and incorrectly classified predictions over a wide and continuous range of threshold levels. Wider application
of the techniques promoted in this paper could greatly improve understanding of the usefulness, and potential
limitations, of habitat models developed for use in conservation planning and wildlife management. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The use of statistical models to predict the
likely occurrence or distribution of species is be-
coming an increasingly important tool in conser-
vation planning and wildlife management. Such
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modelling often employs logistic regression to
model the presence or absence of a species at a set
of survey sites in relation to environmental or
habitat variables, thereby enabling the probability
of occurrence of the species to be predicted at
unsurveyed sites. These models are usually fitted
using generalised linear modelling (McCullogh
and Nelder, 1989) or generalised additive mod-
elling (Hastie and Tibshirani, 1990). For example,
logistic regression has been used widely to predict
the occurrence and habitat use of endangered
vertebrate species (Ferrier, 1991; Lindenmayer et
al., 1991; Mills et al., 1993; Pearce et al., 1994;
Mladenoff et al., 1999), game species (Straw et al.,
1986; Diffenbach and Owen, 1989) and vascular
plants (Austin et al., 1990), to examine the re-
sponse of species to environmental perturbation
(Reckhow et al., 1987), and to model the regional
distributions of a large number of fauna and flora
species to provide information for regional forest
conservation planning (Osborne and Tigar, 1992;
NSW NPWS, 1994a,b).

Evaluating the predictive performance of mod-
els is a vital step in model development. Such
evaluation assists in determining the suitability of
a model for specific applications. It also provides
a basis for comparing different modelling tech-
niques and competing models, and for identifying
aspects of a model most in need of improvement.
Although the use of statistical modelling tech-
niques such as logistic regression is increasing,
relatively little attention has been devoted to the
development and application of appropriate eval-
uation techniques for assessing the predictive per-
formance of habitat models.

To obtain an unbiased estimate of a model’s
predictive performance, evaluation is best under-
taken with independent data collected from sites
other than those used to develop the model. These
independent sites should be sampled representa-
tively from the region across which the model is
likely to be extrapolated. If independent data are
not available, then statistical resampling tech-
niques such as cross-validation (Stone, 1974) and
jackknifing (Efron, 1982), may be used to reduce
bias in the measurement of predictive perfor-
mance. In cross-validation the model development
sites are divided into K groups of roughly equal

size (in the special case of jackknifing each group
consists of just one site). For each group of sites a
model is fitted to the data from the other K−1
groups. This model is used to predict a probabil-
ity of occurrence for each of the sites in the group
excluded from the fitting of the model. This pro-
cedure is repeated for all groups until predicted
values have been calculated for all sites. These
predicted values are then used to assess the accu-
racy of the predictive model. Cross-validation is a
less rigorous approach to model evaluation than
using a truly independent dataset, particularly in
situations where the model development sites are
not distributed representatively across the region
under consideration, in terms of both environ-
mental and geographical coverage.

Good predictions are both reliable and discrim-
inatory. Reliable predictions may be used at ‘face
value’, as each predicted probability is an accurate
estimate of the likelihood of detecting the species
at a given site. A model with good discrimination
ability is one that can correctly discriminate be-
tween occupied and unoccupied sites in an evalua-
tion dataset, irrespective of the reliability of the
predicted probabilities. The measurement of dis-
crimination performance requires a different ap-
proach to that used to measure reliability.

This paper adopts a framework for model eval-
uation developed by Murphy and Winkler (1987,
1992) that explicitly defines the links between
model reliability and discrimination. Techniques
for measuring each aspect of predictive perfor-
mance are described and their calculation demon-
strated using models developed for two species in
north-east New South Wales. The paper also dis-
cusses the relevance and importance of each of
these measures in the application of predictive
models to conservation planning and manage-
ment. While the evaluation techniques presented
are described primarily in relation to logistic re-
gression, these techniques can potentially be ap-
plied to any type of model that generates
predicted probabilities of species occurrence (e.g.
decision trees, artificial neural networks).

This paper considers only a single component
of model performance, that of the accuracy of
model predictions. Other, equally important as-
pects of model performance, such as the rational-
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Fig. 1. Framework for assessing the predictive performance of models, describing the links between each measurable component of
performance described in the text.

ity and interpretability of the explanatory vari-
ables included in the model and the validity of the
predicted shape of the response curves, will not be
discussed here.

2. A framework for evaluating predictive
performance

Murphy and Winkler (1987, 1992) have devel-
oped a framework for assessing predictive perfor-
mance of models that explicitly links model
reliability and discrimination ability. This frame-
work, summarised in Fig. 1, also allows predic-
tion error to be partitioned between a number of
sources. Their approach is based on the joint
distribution of predictions, denoted p, and obser-
vations, denoted x, which can be represented as
p(p,x). The best approach to understanding this
joint distribution is to consider it as a frequency
table of observed and predicted values as shown
in Fig. 2. For models derived from species pres-
ence/absence data the value predicted by the
model for each evaluation site is the probability of
occurrence of the species concerned p. The obser-

vation obtained at each evaluation site is the
presence or absence of the species x. To define
specific characteristics of the performance of a
predictive model, Murphy and Winkler factorise
the joint distribution of p and x into a conditional
distribution and a marginal distribution, using
two different factorisations. Each factorisation
may be considered as viewing the frequency table
from a different direction. The first factorisation
is based on the predictions (the columns of Fig.
2), and involves the conditional distribution of the
observations given the predictions p(x/p), and the
marginal distribution of the predictions p(p):

Fig. 2. The framework described by Murphy and Winkler
(1987, 1992) can be considered as a frequency table of observa-
tions x, and predicted values from the model p for a given set
of evaluation sites.
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Fig. 3. Relationship between the predicted probability of
occurrence and the observed proportion of evaluation sites
occupied for the Yellow Box E. melliodora predictive model
developed for north-east New South Wales. The graph is
developed by plotting the proportion of evaluation sites found
to be occupied within each of ten equi-interval predicted
probability classes. These proportions are then plotted against
the median value of each class. The number of evaluation sites
and the confidence interval of the observed proportion of
observations are shown for each class. The regression line
describes the overall relationship between the observed and
predicted values.

the predictions given the observations describes
the distribution of predicted values for each
unique observed value (the individual rows of
Fig. 2). For presence-absence data, the observa-
tions have only two unique values, and so the
conditional distribution can be thought of as
consisting of two frequency distributions, the
first describing the distribution of predicted val-
ues for evaluation sites at which the species was
observed, and the second describing the distribu-
tion of predicted values for sites at which the
species was not observed.

2.1. Factorisation based on predictions

Murphy and Winkler (1987) describe the fac-
torisation based on predictions as the calibra-
tion-refinement factorisation, where the
conditional distribution p(x/p) reflects model
calibration, and the marginal distribution p(p)
reflects model refinement.

Refinement relates to the range of predictions
produced by the model for a given set of sites.
A model is well refined if predictions cover the
full probability range, with predicted values near
both one and zero. The variance of the predic-
tions (sp) provides a measure of model refine-
ment, with large values indicating a greater level
of refinement than small values. It is necessary
to have at least a moderate level of refinement
in order to be able to examine model perfor-
mance further.

Calibration relates to the level of agreement
between predictions generated by a model and
actual observations. This can be examined
graphically by breaking the predicted probability
range up into classes, and plotting the propor-
tion of evaluation sites that are observed to be
occupied within each of these classes against the
median predicted value of each class, as shown
in Fig. 3. If the model is well calibrated then
the points should lie along a 45° line. The lack
of agreement may be partitioned into three com-
ponents: bias, spread, and unexplained error.
These components and their implications for
species modelling are described in detail later in
this paper.

p(p,x)=p(x/p)·p(p) (1)

The marginal distribution of the predictions
describes the frequency distribution of predicted
probability values within the evaluation sample
(shown by the bottom row of the frequency
table in Fig. 2). The conditional distribution of
the observations given the predictions describes
the distribution of observed values (presence or
absence) obtained for each unique predicted
probability (the individual columns of Fig. 2).

The second factorisation is based on the ob-
servations (the rows of Fig. 2), and involves the
conditional distribution of the predictions given
the observations p(p/x) and the marginal distri-
bution of the observations p(x):

p(p,x)=p(p/x)·p(x) (2)

The marginal distribution of the observations
describes the distribution of observed values
(presence or absence) within the evaluation sam-
ple (shown by the third column of the frequency
table in Fig. 2). The conditional distribution of
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2.2. Factorisation based on obser6ations

The factorisation based on the observations is
described by Murphy and Winkler (1987) as the
discrimination-base rate factorisation, where the
conditional distribution p(p/x) measures the dis-
crimination ability of a model, and the marginal
distribution p(x) is the base rate.

The base rate indicates how often different
values of x (presence or absence) occur and, in
species modelling, therefore describes the preva-
lence of a species at a sampled set of sites (i.e.
species rarity or prior probability of occurrence).
Murphy and Winkler call this distribution the
base rate because it provides information on the
probability of a species being observed as present
at a randomly selected site, in the absence of a
predictive model. The base rate is measured as the
proportion of evaluation sites at which a species is
observed to be present. This value needs to be
moderately large in order for the predictive per-
formance of a model to be examined.

The conditional distribution p(p/x) indicates
how often different values of p are predicted for
sites at which a particular value of x is observed.
For presence/absence observations of a species,
p(p/x=1) describes the proportion of occasions
that each value of p is predicted for sites at which
the species has been recorded as present, and
p(p/x=0) describes the proportion of occasions
that each p value is predicted for sites at which
the species has been recorded as absent. These
conditional probabilities indicate how well a
model discriminates between sites at which the
species has been observed and those at which it
has not been observed. The discrimination ability
of a model can be examined graphically by plot-
ting a frequency distribution of the predicted val-
ues for occupied sites, and comparing this with a
frequency distribution of the predicted values as-
sociated with unoccupied sites (see Fig. 8a). A
model with good discrimination ability will show
little overlap between these two distributions, with
the predicted values of occupied sites being
greater on average than those of unoccupied sites.
The measurement of discrimination capacity is
described later in this paper.

2.3. Relationship between calibration/refinement
and discrimination

The two factorisations described by Murphy
and Winkler (1987) are equivalent,

p(x/p)·p(p)=p(p/x)·p(x) (3)

so that a model which has good calibration and
refinement must also have good discrimination (as
the base rate is fixed and constant). However, the
converse is not necessarily true, as calibration and
refinement may both be poor, yet still combine in
a manner which gives good discrimination.

As suggested by the above equation, compo-
nents of the calibration-refinement factorisation
influence the discrimination capacity of a model.
Refinement affects how well a model will poten-
tially discriminate between observed presence and
absence, as the likelihood of good discrimination
increases as the predictions span a larger range of
the 0 to 1 probability distribution. For example, a
model that always predicts a value of 0.5, whether
a site is occupied or not, lacks refinement and will
have no discriminatory power, even though it may
exhibit excellent calibration. As the range of pre-
dicted probabilities increases, the model has an
increased likelihood of being able to discriminate
between positive and negative outcomes. That is,
good refinement does not necessarily imply good
discrimination, but improves the potential for
good discrimination. A model has good discrimi-
natory power if the predicted probability range
associated with occupied sites is higher than, and
has little overlap with, the probability range asso-
ciated with unoccupied sites.

However, although these two factorisations are
related, they tell us about different aspects of the
predictive performance of a model. The calibra-
tion/refinement factorisation tells us about the
reliability of predictions; that is, how closely pre-
dicted probabilities match observed proportions
of occurrence. The discrimination/base rate fac-
torisation tells us about how well predictions can
discriminate between observed presence and ab-
sence, regardless of the absolute value of those
predictions. The relative importance of each per-
formance measure — calibration, refinement and
discrimination — depends on the use of the
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model and the experience of the user. If the
predictions are to be used as an absolute measure
of probability of occurrence, then knowledge of
prediction calibration (reliability) and refinement
(sharpness) is essential, otherwise the predictions
may be misleading. If, on the other hand the
predictions from a model are to be used only as a
relative measure of the likelihood of occurrence
(for example, to rank areas for reservation), then
only discrimination ability need be examined.
However, if this relative index is to be broken into
two or more classes (for example, suitable versus
unsuitable habitat, or areas with high, moderate
and low conservation potential), then model cali-
bration and refinement need to be examined (at
least visually) to select appropriate class
thresholds.

3. Measuring discrimination performance

The discrimination performance of wildlife
habitat models derived by logistic regression is
often assessed by examining the agreement be-
tween predictions and actual observations, using a
2×2 classification table as shown in Fig. 4 (Lin-
denmayer et al., 1990; Pearce et al., 1994). A
species is predicted to be present or absent at a
site based on whether the predicted probability
for the site is higher or lower than a specified
threshold probability value.

The table can be used to calculate four indices
describing predictive performance of models. Two

of these indices — sensitivity (or the true positive
fraction) and specificity (or the true negative frac-
tion) — measure the proportion of sites at which
the observations and the predictions agree. The
other two indices — the false positive fraction
and the false negative fraction — measure the
proportion of sites at which the observations and
the predictions disagree. These four indices are
defined as follows (Fig. 4):

Sensitivity

=
Number of positive sites correctly predicted

Total number of positive sites in sample

=
A

(A+C)
(4)

Specificity

=
Number of negative sites correctly predicted

Total number of negative sites in sample

=
D

(B+D)
(5)

False positive fraction

=
Number of false positive predictions

Total number of negative sites in sample

=
B

(B+D)
(6)

False negative fraction

=
Number of false negative predictions

Total number of positive sites in sample

=
C

(A+C)
(7)

Using these indices, the accuracy (i.e. the total
fraction of the sample that is correctly predicted
by the model) can be calculated as:

Accuracy=
A+D

A+B+C+D
(8)

However, this measure of accuracy can be mis-
leading, as its interpretation depends on a knowl-
edge of the prior probability of occurrence (or
base rate) of the species in question, or p(x). For
example, if the species occurs at only 5% of sites
surveyed, a high predictive accuracy can be ob-

Fig. 4. The classification table describing the agreement be-
tween the observed presence and absence of a species and the
predicted presence or absence of a species. Each of the values
A, B, C and D, represent numbers of observations, so that
their sum equals the sample size of the evaluation sample
(A+B+C+D).
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Fig. 5. An example of the model that underlies ROC analysis.
The curves represent the frequency distribution of probabilities
predicted by a model for occupied and unoccupied sites within
a data set for which the real distribution of the species is
known. A threshold probability, represented by the vertical
line, separates sites predicted to be occupied from sites pre-
dicted to be unoccupied.

right of that for the unoccupied sites, p(p/x=0),
if a model is to be of any use in terms of discrim-
ination ability. Unless this discrimination capacity
is perfect, the two distributions will overlap, and
some predicted values may be associated with
either occupied or unoccupied sites. To generate a
2×2 classification table, a decision threshold (the
vertical line) must be identified to separate sites
predicted to be occupied from those predicted to
be unoccupied. For a given decision threshold the
proportion of the distribution of occupied sites
falling to the right of this threshold defines the
sensitivity (true positive fraction) of a model,
while the proportion of unoccupied sites falling to
the left of the thresholds defines the specificity (or
true negative fraction), as indicated in Fig. 5
(Metz, 1978). The proportion of the unoccupied
distribution to the right of the threshold is the
false positive fraction, while the proportion of the
occupied distribution to the left of the threshold is
the false negative fraction. The sensitivity, specifi-
city, false positive rate and false negative rate will
vary as the decision threshold is changed.

These traditional measures of discrimination
capacity depend on the arbitrary choice of a
decision threshold, which introduces a further
complication into the interpretation of the classifi-
cation statistics. The choice of a decision
threshold in habitat modelling is usually based
partly on knowledge of the prior probability of
occurrence of the species of interest, i.e. its rarity,
and partly on value judgements regarding the
consequences of various kinds of correct and in-
correct decisions (Metz, 1986; Fielding and Bell,
1997). For example, if a species is endangered and
the model is intended to identify potential re-in-
troduction sites, then it is important that the
habitat chosen is indeed suitable for the species,
to minimise the risk of failure. This would require
the choice of a relatively high threshold probabil-
ity that would result in the identification of only
those sites with a high predicted probability of
occurrence. The number of true positive and false
positive values would be correspondingly low, as
few sites would be predicted to be occupied. Con-
versely, if the model is used to identify areas
within which proposed development may impact
the species (e.g. as part of an environmental im-

tained if the species is predicted to never occur.
The predictions will then be correct 95% of the
time. A true accuracy measure should not be
sensitive to the relative frequency of the species
within the test sample. This measure is also a poor
indicator of relative predictive accuracy, as two
models may have the same accuracy, but perform
differently with respect to the types of correct and
incorrect predictions they provide. The incorrect
predictions from one model may be all false nega-
tives, while for another model they might be all
false positives. The nature of incorrect predictions
must be examined further to properly interpret
the performance of a model, as different types of
error have different implications for how a model
can be applied.

As described by Murphy and Winkler (1987),
the discrimination capacity of a model can be
evaluated graphically by plotting the two condi-
tional distributions p(p/x=1) and p(p/x=0) on
the same axis and examining the degree of over-
lap. Two such distributions are depicted in Fig. 5.
The horizontal axis represents the predicted prob-
ability of a site being occupied, as derived from
the model. The two curves represent the frequency
distribution of predicted probabilities for two sets
of evaluation sites: sites at which the species was
observed as present (occupied sites) and sites at
which the species was recorded as absent (unoccu-
pied sites). The distribution of predicted values
for the occupied sites, p(p/x=1), should lie to the
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pact assessment), then it is important to be pre-
cautionary by identifying all potentially suitable
habitats. The decision threshold would therefore
need to be more lenient, and the true positive rate
and the false positive rate would be expected to be
high, as the model predicts more sites to be
occupied. The choice of an actual threshold value
in both of these cases is essentially arbitrary, and
different practitioners may choose different val-
ues. However, this choice strongly affects the rela-
tive frequencies of correct and incorrect
predictions, and thus the measurement of discrim-
ination performance. A true measure of discrimi-
nation capacity should be valid for all situations
in which a model will be employed, with any
decision threshold that may be appropriate for a
given application.

Metz (1986), and more recently from an ecolog-
ical perspective, Fielding and Bell (1997) have
reviewed several of the most commonly used dis-
crimination indices, including those traditionally
employed in wildlife habitat studies. They found
most indices to be unsuitable as an unbiased

measure of accuracy, being dependent on species
rarity and/or the choice of a threshold probabil-
ity. However, both Metz (1986), and Fielding and
Bell (1997) found that one index did meet the
requirements of an unbiased discrimination index.
This index is derived from the area under a rela-
tive operating characteristic curve.

3.1. The relati6e operating characteristic cur6e

From Fig. 5 it can be seen that the true positive
fraction (sensitivity) plus the false negative frac-
tion must add to 1, as do the true negative
fraction (specificity) and false positive fraction.
That is, for a given observed state (positive and
negative), the number of correct predictions plus
the number of incorrect predictions must equal
the number of observations with that state. Thus,
the various indices defined above are related by
the following equations:

sensitivity+ false negative fraction=1 (9)

specificity+ false positive fraction=1 (10)

In the notation of Murphy and Winkler (1987)
these equations can also be written as:

p(P/x=1)+p(A/x=1)=1 (11)

p(A/x=0)+p(P/x=0)=1 (12)

where P is a predicted value greater than or equal
to the threshold probability, and A is a predicted
value less than the threshold probability.

Because of these constraints, it is only necessary
to specify one fraction from each equation above
to describe all four performance measures. Typi-
cally, the sensitivity and the false positive fraction
are specified, as these fractions describe the per-
formance of the positive predictions, and vary in
the same direction as the decision threshold is
varied. Varying the decision threshold incremen-
tally across the predicted probability range of a
model will generate a series of pairs of sensitivity
and false positive values. Each pair of sensitivity
and false positive values can be plotted as the y
and x coordinates respectively on a graph, such as
that shown in Fig. 6. This series of points defines
a smooth curve, which is called the relative oper-
ating characteristic (ROC) curve (Metz, 1978).

Fig. 6. The ROC graph in which the sensitivity (true positive
proportion) is plotted against the false positive proportion for
a range of threshold probabilities. A smooth curve is drawn
through the points to derive the ROC curve. The 45° line
represents the sensitivity and false positive values expected to
be achieved by chance alone for each decision threshold.
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Fig. 7. The ROC curve plotted on binormal axes.

Standard error of sensitivity fraction (TPF)

=
' TPF× (1−TPF)

(No. occupied sites−1)× (No. occupied sites)
(13)

Standard error of false positive fraction (FPF)

=
' FPF× (1−FPF)

(No. unoccupied sites−1)× (No. unoccupied sites)
(14)

A smooth curve is then drawn through the
points and error bars. More objective and reliable
methods require that some assumptions be made
regarding the functional form of the ROC curve.
Many functional forms have been proposed, but
the binormal form is used most widely. According
to the binormal model, each ROC curve is as-
sumed to have the same functional form as that
generated by two Gaussian distributions, or vari-
ables that can, by some monotonic transforma-
tion, be transformed into Gaussian form. The
binormal assumption allows the ROC curve to be
transformed to a straight line when plotted on
normal deviate axes, as shown in Fig. 7 (Metz,
1986). Other distributional forms, including logis-
tic, triangular and exponential, also yield approxi-
mately straight lines on a binormal graph (Swets,
1986b). The Gaussian approach is therefore appli-
cable even if the form of the underlying distribu-
tions is not Gaussian.

The binormal ROC curve can be described by
two parameters, a and b ; a is the y-intercept, and
b is the gradient of the straight line representing
the ROC curve when plotted against normal devi-
ate axes. Assuming a Gaussian distributional
form, a can be interpreted as the distance between
the means of the two distributions, (mx=1−mx=

0)/sx=0, and b can be interpreted as the ratio of
the standard deviations of the two distributions
sx=1/sx=0.

For a binormal graph the task of curve-fitting
becomes one of choosing numerical values for a
and b that best represent the measured data. This
is usually done using maximum likelihood estima-
tion algorithms (Metz, 1986).

If the two underlying decision distributions
have equal variance then the ROC curve is sym-
metrical about the minor axis, as shown in Fig. 6.

The ROC curve describes the compromises that
are made between the sensitivity and false positive
fractions as the decision threshold is varied.
Furthermore, the sensitivity and false positive
values are independent of the prevalence of a
species because they are expressed as a proportion
of all sites with a given observed state (Swets,
1988). ROC analysis is therefore independent of
both species prevalence and decision threshold
effects.

3.2. Deri6ing the ROC cur6e

Several techniques are available for fitting the
ROC curve to the sensitivity and false positive
data. Any number of sensitivity and false positive
pairs may be used to define and fit the ROC
curve, although most applications use at least five
points. However, depending on the curve fitting
technique used, larger numbers of sensitivity and
false positive pairs will result in a better fit. We
have generally employed thresholds spaced at 0.01
intervals across the predicted probability range.

The simplest technique for fitting the ROC
curve is to plot the points manually with error
bars, calculated using the following formulae
(Metz, 1978):
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However, in practice the curve tends to be skewed
either toward the origin or toward the top right
hand corner of the graph. On binormal axes, the
symmetrical ROC curve has a gradient of 1. If the
curve is asymmetrical, the gradient will tend to be
less than 1 if the curve is skewed toward the
origin, and greater than 1 if skewed toward the
top right hand corner of the graph. These differ-
ences occur due to the distributions of the two
decision variables not having equal variance. If
the curve is skewed toward the origin, then the
variance of the distribution for the unoccupied
decision variable is larger than that for the occu-
pied sites.

In practice, we have found the Gaussian ap-
proach to be a rapid and easily applied technique
for fitting the ROC curve to the sensitivity and
false positive pairs. However, we also recommend
displaying the actual sensitivity and false positive
points on the ROC curve, so that departures from
the Gaussian assumption, if present, may be
observed.

The ROC curve provides a graphical approach
to assessing discrimination capacity over a range
of threshold probabilities. A model that has no
discrimination ability will generate an ROC curve
that follows the 45° line. That is, for all decision
threshold values, the sensitivity equals the false
positive fraction. Perfect discrimination is indi-
cated when the ROC curve follows the left hand
and top axes of the unit square. That is, for all
threshold values, the true positive fraction equals
one and the false positive fraction equals zero.

The ROC curve can also be used to identify an
appropriate threshold value for a given applica-
tion, by balancing the cost that would arise from
an incorrect decision against the benefit to be
gained by a correct decision (Metz, 1978; Hilden,
1991). Murtaugh (1996) further describes, with
examples, the application of ROC methodology in
assessing the accuracy of ecological indicators.

3.3. Deri6ing a discrimination index from the
ROC cur6e

Once an ROC curve is developed, a single index
is required to describe the discrimination capacity
of the model. Hilden (1991) argues that a sum-

mary measure of discrimination accuracy must
incorporate cost-benefit information. However, in
ecological applications the costs and benefits asso-
ciated with correct and incorrect predictions are
often quite intangible, making their quantification
extremely difficult and, at best, arbitrary. It is
therefore most practicable to develop a summary
measure that assumes that the costs and benefits
are equal.

Swets (1986a) has reviewed several discrimina-
tion measures that are consistent with the use of a
variable decision threshold (as employed in ROC
curves) and do not require cost-benefit informa-
tion. Unfortunately, most of these measures as-
sume that the two underlying decision
distributions have equal variance, an assumption
that is rarely met in ecological applications. Swets
concluded that the best discrimination index in a
range of situations appears to be the area under
the ROC curve expressed as a proportion of the
total area of the unit square defined by the false
positive and true positive axes. This index ranges
from 0.5 for models with no discrimination abil-
ity, to 1 for models with perfect discrimination.

This index can also be interpreted in terms of
the true positive and false positive values used to
create the curve. Areas between 0.5 and 0.7 indi-
cate poor discrimination capacity because the sen-
sitivity rate is not much more than the false
positive rate. Values between 0.7 and 0.9 indicate
a reasonable discrimination ability appropriate
for many uses, and rates higher that 0.9 indicate
very good discrimination because the sensitivity
rate is high relative to the false positive rate
(Swets, 1988). Hanley and McNeil (1982) have
shown that the ROC index can also be interpreted
as the probability that a model will correctly
distinguish between two observations, one posi-
tive and the other negative. In other words, if a
positive observation and a negative observation
are selected at random the index is an estimate of
the probability that the model will predict a
higher likelihood of occurrence for the positive
observation than for the negative observation.

The simplest technique to measure the area
under the ROC curve is the direct approach,
which uses the trapezoidal rule to calculate the
area directly from the points on the graph. This
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approach, however, can underestimate the true
area under the curve if the sample is not well
refined.

If the curve is derived using the parametric
Gaussian approach, then the area under the
curve, A, can be calculated using the two parame-
ters a and b describing the straight line on binor-
mal axes (Swets and Pickett, 1982). Alternatively,
Brownie et al. (1986) have demonstrated how the
mean and variance of the predicted values for
occupied and unoccupied sites can be used to
directly calculate the area under the ROC curve if
the predicted values are normally distributed. This
approach can result in more precise estimates of
the area under the ROC curve, because the pre-
dictions and observations do not need to be first
converted to true positive and false positive
counts based on a series of probability thresholds.
Instead the raw predicted probabilities are used
directly to calculate the area under the ROC
curve. Both of these statistical techniques depend
on the degree to which the data meet the binormal
assumption, but this assumption may not be met
with ecological data.

Bambar (1975) recognised that the area under
the ROC curve is intimately connected with the
statistic W calculated in the Wilcoxon or Mann–
Whitney statistical test of the difference between
two samples (Sokal and Rohlf, 1981). The Mann–
Whitney statistic therefore provides a means by
which the area under an ROC curve may be
calculated without the need to assume normality.
The Mann–Whitney statistic is based on a com-
parison between the ranks of predicted values
associated with positive observations and the rank
of predicted values associated with negative obser-
vations. Hanley and McNeil (1982) further de-
scribe this approach, and also provide a formula
by which the standard error of the area may be
calculated. Bootstrapping may also be used to
calculate the standard error of W (Efron and
Tibshirani, 1993). The bootstrap is performed by
randomly selecting a site, with replacement, n
times from the total set of n evaluation sites (i.e. a
given site can be represented more than once in
the sample). Each sample selected in this manner
is used to calculate a W value. This is repeated a
large number of times, and the generated sample

of W values is then used to estimate the standard
error of the original Mann–Whitney value. The
bootstrapping approach is preferable to that pre-
sented by Hanley and McNeil (1982).

Of the four techniques for calculating an ROC
index of discrimination ability, the Mann–Whit-
ney technique (with bootstrapping to provide a
standard error) is the most reliable approach for
ecological applications as it makes no distribu-
tional assumptions. This is the approach that will
be used below. However, if it is known that the
two decision distributions are binormal, then the
parametric approach of Brownie et al. (1986) is
recommended as probably providing the most
accurate results.

The following example illustrates the evaluation
of discrimination performance:

3.4. Example 1

The distribution of Yellow Box Eucalyptus mel-
liodora in north-east New South Wales has been
modelled as a function of environmental and geo-
graphical attributes using field survey data from
2223 sites distributed throughout the region
(NSW NPWS 1994b). Yellow Box was recorded
as present at 80 of these sites.

The following logistic regression model was
fitted to the Yellow Box survey data using for-
ward stepwise generalised additive modelling
(Hastie and Tibshirani, 1990):

log it(p)=s(soil depth, df=4)
+s(moisture index, df=3)
+s(rainfall, df=2)+s(temperature, df=2)

(15)

The predictive accuracy of this model was then
tested using independent evaluation data collected
at a further 407 sites within the region (NSW
NPWS 1995a). Yellow Box was recorded at 22 of
these evaluation sites.

Before calculating an ROC curve, the discrimi-
nation ability of the model was assessed visually
by comparing the distribution of predicted proba-
bilities for occupied sites with the distribution of
the predicted probabilities for unoccupied sites, as
shown in Fig. 8a. The graph indicates that pre-
dicted values for sites at which the species was
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Fig. 8. Discrimination capacity of the distribution model developed for Yellow Box E. melliodora in north-east New South Wales.
A: Distribution of predicted probability values associated with either occupied sites or unoccupied sites. B: The ROC curve.
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recorded are, on average, higher than those for
unoccupied sites, suggesting the model has good
discrimination ability. The refinement of values
predicted by the model is also good, with predic-
tions ranging from 0 to approximately 0.7.

To examine the discrimination performance of
the model over a range of threshold levels, the
proportion of evaluation sites correctly predicted
to be occupied (sensitivity or true positive rate),
and the proportion of sites incorrectly predicted
to be occupied (false positive rate) were calculated
for 70 threshold values spread evenly across the
range of available predicted values (from 0.0 to
0.7). These sensitivity and false positive values
were then plotted against each other, and a
smooth curve drawn through the points (using the
Gaussian assumption), to produce the ROC curve
shown in Fig. 8b.

To obtain a summary measure of discrimina-
tion capacity, the area under the ROC curve was
calculated using the non-parametric approach
based on the Mann–Whitney statistic. The non-
parametric approach was employed because Fig.
8b indicates that the Gaussian assumption does
not provide a good fit for this species, as the fitted
curve underestimates the area under the observed
ROC curve. The standard error of the Mann–
Whitney statistic was calculated using a bootstrap
sample of 200. The discrimination capacity of the
model was calculated to be 0.91690.033 indicat-
ing that the model can correctly discriminate be-
tween occupied and unoccupied sites 91.6% of the
time. In other words, if a pair of evaluation sites
(one occupied and the other unoccupied) is cho-
sen at random, then there is a 0.916 probability
that the model will predict a higher likelihood of
occurrence for the occupied site than for the
unoccupied site.

4. Measuring model calibration

While discrimination deals with the ability of a
model to distinguish between occupied and unoc-
cupied sites, calibration describes the agreement
between observations and predicted values (or
goodness-of-fit), and therefore describes the reli-
ability with which a model predicts the probabil-

ity of a site being occupied. The deviance has
traditionally been used to evaluate logistic regres-
sion models by calculating the amount by which a
model reduces null deviance (or the percentage of
null deviance explained by the model). The devi-
ance, however, in uninformative about the good-
ness-of-fit of a model developed from binary data
as it depends only on the fitted probabilities (Col-
lett, 1991 p. 64). However, we can examine the
agreement between observations and prediction to
examine how and why the predictions depart from
the observations. As described earlier (Fig. 1),
calibration, can be separated into two measurable
components, bias and spread, and a third compo-
nent, unexplained error.

These components of calibration can be best
understood by re-examining Fig. 3. If a regression
line is fitted to the logits of the predicted probabil-
ities and the observed proportions, then bias and
spread can be thought of as the intercept and
slope, respectively, of this line. The regression line
will be a straight line if both the predicted and
observed axes are transformed to a logit scale, but
will be a curved logistic line when plotted against
untransformed probability axes as shown in Fig.
3. Perfect calibration is represented by a 45° line
(the dotted line in Fig. 3). Bias describes a consis-
tent overestimate or underestimate of the proba-
bility of occurrence of a species resulting in a
consistent upward or downward shift in the re-
gression line across the entire predicted probabil-
ity range. In other words, the intercept of the
regression line is either too high or too low. It
occurs because the prevalence of the species in the
evaluation data is higher or lower than that in the
original model development data due, for exam-
ple, to the use of different survey techniques, or
seasonal variation in the abundance or detectabil-
ity of the species. Bias may also arise when a
model, developed in one region or environment, is
applied to another region or environment where
the species is more or less prevalent.

Spread describes the systematic departure of the
regression line, fitted to the predicted and ob-
served values, from a gradient of 45°. On logit
axes, a slope of 1, in the absence of bias, implies
the predictions follow the 45° line. A slope greater
than 1 indicates that predicted values greater than
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0.5 are underestimating the occurrence of the
species and that predicted values less than 0.5 are
overestimating the occurrence of the species. A
gradient between 0 and 1 implies that predicted
values less than 0.5 are underestimating the occur-
rence of the species and that predicted values
greater than 0.5 are overestimating the occurrence
of the species. A gradient significantly different
from 1 indicates misspecification of a model.

The third component of calibration, unexplained
error, is due to the variability of individual records
around the regression line fitted to predicted and
observed values, and describes variation not ac-
counted for by the bias and spread of a model.
Some of this variation arises because particular
covariate patterns or habitat types were not well
represented in the development the model, and may
be identified by analysing deviance, bias or spread
residuals (Miller et al., 1991). The rest of the
unexplained error is due to random variation, the
source of which is not identifiable through residual
analysis. In wildlife habitat studies this component
of the deviance is expected to be quite large due to
error in measurement of species presence and
environmental predictors, and to factors not in-
cluded in the model that may influence habitat
selection or species distribution (such as competi-
tion, predation, or biogeographical barriers to
dispersal).

A reliable model (well calibrated) should be able
to correctly predict the actual proportion of sites
occupied by the species of interest. That is, E(x/
p)=p. Cox (1958) formalised an approach to
detecting bias and spread by using logistic regres-
sion to model the relationship between the logit of
the predicted probabilities (pi) for the evaluation
sites and the observed occurrences (p(xi=1)) at
these sites. This modelled relationship takes the
form:

ln
�p(xi=1)

p(xi=0)
�

=a+b ln
� pi

1−pi

�
(16)

The coefficients a and b in this relationship
represent bias and spread respectively. In a per-
fectly calibrated model a will have a value of zero
and b will have a value of one.

If a=0, then the observed proportion (p(xi=1))
at pi=0.5 will be 0.5, regardless of the value of b.

If b\1 (Fig. 9(A)) then predicted values less than
0.5 are overestimating the observed proportion of
occurrence and predicted values greater than 0.5
are underestimating observed occurrence. If 0B
bB1, then the reverse is occurring, with predicted
values less than 0.5 underestimating and those
above 0.5 overestimating (Fig. 9(B)). If bB0, then
the overall trend in predicted probabilities is wrong,
with values less than 0.5 being associated with a
higher observed proportion of occurrence than
those above 0.5.

At a predicted (p) value of 0.5, ln[p(xi=1)/
p(xi=0)]=a, and a=0 implies p(xi=1)=0.5.
Thus a reflects the overall bias of the model if b=1.
However, if b " 1, then a describes the model bias
at p=0.5. This occurs because a is a function of
b :

a=mp−bmx (17)

The predicted probabilities are generally too low
if a\0, and too high if aB0 (Fig. 9(C, D)). Fig.
9(E, F) illustrate the relationship between model
predictions and observations if both spread error
and bias are present.

Cox (1958) devised score tests to evaluate the bias
and spread of binary regression models. Miller et
al. (1991) provide equivalent tests based on likeli-
hood ratio statistics that are more accurate and
easier to apply. These tests will be used here.

The first of these likelihood ratio tests examines
the hypothesis that a=0, b=1 and is calculated as
the difference between two deviance values. The
first deviance value, D(0,1), is simply the deviance
of observations at the evaluation sites in relation to
raw predictions from the original model. This is
equivalent to forcing a=0 and b=1 in Eq. (16),
i.e. by assuming that the model has perfect calibra-
tion. The second deviance value, D(a,b), is the
deviance of observations in relation to the adjusted
predictions, obtained by applying Eq. (16) using
fitted values for a and b. In other words, these
values are used to correct predictions for bias and
spread. The test evaluates the significance of this
correction by comparing the difference between the
two deviance values:

D(0,1)−D(a,b) (18)

to a x2 distribution with two degrees of freedom.
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Fig. 9. Calibration diagrams showing effect of bias and spread on the agreement between model predictions and observations. (A)
No bias with spread error (gradient greater than 1); (B), no bias with spread error (gradient less than 1); (C) positive bias with
correct spread; (D) negative bias with correct spread; (E) positive bias with spread error (gradient greater than 1); (F) negative bias
with spread error (gradient greater than 1).
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Fig. 9. (Continued)

The second likelihood ratio test examines the
hypothesis that a=0/b=1, and is a test for bias
given appropriate spread. The following test
statistic is compared to a x2 distribution with one
degree of freedom:

D(0,1)−D(a,1) (19)

where D(a,1) is the deviance of observations in
relation to predictions adjusted by applying Eq.
(16) using a fitted value for a but forcing b to
equal 1.

The third likelihood ratio test examines the
hypothesis that b=1/a and is a test for incorrect
spread given no bias. The following test statistic is
again compared to a x2 distribution with one
degree of freedom:

D(a,1)−D(a,b) (20)

The following example illustrates the evaluation
of model calibration.
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4.1. Example 2

As described in Example 1 the distribution of
Yellow Box E. melliodora has been modelled
within north-east New South Wales as a function
of several regional scale environmental variables
using field survey data from 2223 sites. The occur-
rence of the species has also been surveyed at an
additional 407 sites within the region. These addi-
tional data are now used to evaluate the reliability
of the model’s predictions in terms of calibration,
bias and spread.

The overall agreement between model predic-
tions and the observed occurrence of Yellow Box
within the evaluation data was examined graphi-
cally. This was undertaken by breaking the pre-
dicted probability range into ten classes, and
calculating the proportion of occupied sites within
each class. The proportion of occupied sites, and
the median predicted probability for each class
were then plotted against each other, and a
smooth curve drawn through the points, as shown
in Fig. 3. If there were perfect agreement between
predicted probabilities from the model and the
observed occurrence of the species, the points in
this graph would lie along the 45° line. Significant
systematic departure of the points from this 45°
line indicates the existence of calibration bias
and/or spread error. Examination of the curve in
Fig. 3 suggests that the model may lack calibra-
tion due to both bias and incorrect spread within
the predictions.

To determine whether this lack of calibration is
statistically significant, the observed data were
modelled as a function of the logit of the pre-
dicted values to produce the following logistic
regression model:

ln
�p(xi=1)

p(xi=0)
�

= −0.3987+0.6659 ln
� pi

1−pi

�
(21)

This model was used to fit the smooth curve to
the points in Fig. 3. If the observations agree with
the predictions, then the intercept and gradient of
this regression line should not differ significantly
from 0 and 1, respectively.

To determine whether the a and b coefficients in
the above model differ significantly from 0 and 1,

thereby suggesting significant bias and/or spread
error, the likelihood ratio tests reported by Miller
et al. (1991) were applied. D(a,b), the deviance of
observed values in relation to the logistic regres-
sion model presented in Eq. (21) was calculated to
be 112.451 and the Null deviance from this model
D(0,1) as 115.697 with 405 degrees of freedom.
Therefore, using Eq. (18)

D(0,1)−D(a,b)=115.697−112.451=3.246
(22)

This value was not significant when compared
to a x2 distribution with two degrees of freedom.
Therefore, the a and b coefficients do not differ
significantly from 0 and 1, respectively. Conse-
quently, the curve in Fig. 3 does not depart
significantly from the 45° line and the model
accurately predicts the observed probability of
occurrence of Yellow Box at the evaluation sites.
If this test had rejected the hypothesis that a=0,
b=1 then the alternative hypothesis that a=0/
b=1 (bias given appropriate spread) or b=1/a
(incorrect spread in the absence of bias) could
have been evaluated further using the likelihood
ratio tests presented in Eqs. (19) and (20).

5. Comparing the performance of two or more
models

It is often necessary to compare the perfor-
mance of two or more models for a species,
developed using different explanatory variables or
different modelling techniques, in order to choose
the most appropriate model for a given applica-
tion. The reliability of predictions generated by
two or more models can be compared by examin-
ing differences in residual deviance, D(0,1), of
evaluation data in relation to predictions, and by
comparing levels of prediction error in terms of
calibration bias and spread. The model providing
the most reliable predictions, is that with the
smallest residual deviance and the least error in
prediction spread and bias.

The difference between the area under two
ROC curves generated by two or more models
provides a measure of comparative discrimination
capacity of these models when applied to indepen-
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dent evaluation data. The best model is that gen-
erating the largest ROC area. However, it is im-
portant to note that, if two ROC curves intersect,
then neither model performs consistently better
than the other across the entire range of decision
thresholds (Brownie et al., 1986). This informa-
tion needs to be considered when interpreting
differences in the summary index of average dis-
crimination performance.

The significance of the difference between the
areas under two ROC curves (A1 and A2) gener-
ated using independent data can be calculated as
a critical ratio test:

Z=
A1−A2


SEA 1

2 +SEA 2

2
(23)

The value of Z is then tested against a table of
areas under the normal probability density func-
tion. If this value is significant at a specified
probability threshold this is evidence that the true
ROC areas are different.

However, if the two ROC curves are generated
using the same evaluation data, the two areas are
likely to be positively correlated and thus estima-
tion of the standard error of the difference in area
under the two curves, the denominator in Eq.
(23), needs to account for this correlation. Hanley
and McNeil (1983) have developed the following
equation to incorporate r, the correlation between
predictions for the two models:

SE(A1−A2)=
SEA 1

2 +SEA 2

2 −2rSEA 1
SEA 2

(24)

The right side of this equation replaces the
denominator in the critical ratio test in Eq. (23).

To calculate r, it is necessary to determine two
intermediate correlation coefficients, the correla-
tion between predictions from the two models for
the positive events and the correlation between
predictions for the negative events. These are
calculated independently using either the Pearson
product moment correlation coefficient or the
Spearman Rank correlation coefficient. The aver-
age of these two correlation values, and the aver-
age ROC area of the two models, are then
compared to the table provided by Hanley and
McNeil (1983) to determine r. (The average corre-

lation value can be used to approximate r if the
table is not available.)

When comparing two ROC curves it is impor-
tant to consider not only the area under each
curve, as discussed, but also the shape of the
curves and whether they intersect. The area under
the curve provides a summary measure of model
discrimination accuracy. Consequently, the ROC
curve with the larger area is, on average, more
accurate. However, the shape of the ROC curve is
also important, and describes the trade-off be-
tween true positive and false positive rates as the
threshold probability is altered. Therefore, two
ROC curves that intersect provide different levels
of accuracy depending on which threshold proba-
bility level is selected. This trade-off may affect
the choice of a model for a given application.

The following example demonstrates the analy-
sis of the difference in discrimination capacity
between two models derived from the same evalu-
ation data.

5.1. Example 3

The distribution of the small reptile Calyptotis
scutirostrum in north-east New South Wales has
been modelled using presence/absence data from
836 sites as a function of a number of climatic,
topographical and contextual variables (NSW
NPWS, 1994a). The discrimination capacity of
this distributional model was determined by cal-
culating the area under an ROC curve developed
using data from 125 independent evaluation sites
within the region (NSW NPWS, 1995b; Clode and
Burgman, 1997). One hundred threshold probabil-
ities were used to calculate the curve. The model
was found to have good discrimination ability,
with an ROC area of 0.81190.038.

In an attempt to further improve the discrimi-
nation capacity of the model, microhabitat vari-
ables measured at each of the 125 evaluation sites
were added to the model. To evaluate this refined
model, a jackknife procedure was employed to
calculate independent predicted probability values
for each of the 125 validation sites. These values
were then used to develop a second ROC curve.
The discrimination capacity of this refined model
was calculated to be 0.88890.028.
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To determine whether the addition of micro-
habitat variables provides a significant improve-
ment in discrimination capacity over the original
model, the significance of this improvement was
calculated using a critical ratio test, modified to
control for correlation between the two discrimi-
nation indices. This correlation exists because the
same 125 evaluation sites were used to calculate
the area under the ROC curve for both predictive
models.

Following the procedure of Hanley and McNeil
(1983), the degree of correlation between the two
ROC area measurements was calculated to be
0.982 using the many-ties version of the Spearman
Rank correlation test (Conover, 1980). This value
was calculated from the mean of the correlation
between the predictions for occupied sites for each
model (r=0.979), and the predictions for unoccu-
pied sites for each model (r=0.984). The average
correlation value of 0.982 was incorporated into
the calculation of a critical ratio test statistic,
using Eqs. (23) and (24):

Z=
A1−A2


SEA 1

2 +SEA 2

2 −2rSEA 1
SEA 2

=
0.888−0.811


0.0382+0.0282−2×0.982×0.038×0.028

=6.55 (25)

The resulting Z-value was significant at the 1%
level when compared to the normal distribution.
Therefore, adding the microhabitat information
to the predictive model significantly improved the
ability of the model to discriminate between occu-
pied and unoccupied sites.

6. Conclusion

Wider application of the techniques described
in this paper could improve understanding of the
usefulness, and potential limitations, of habitat
models developed for use in conservation plan-
ning and wildlife management. Evaluation of pre-
dictive performance can also assist in determining
the suitability of a model for specific applications.

There are three main ways in which predictions
of species occurrence derived from logistic regres-

sion models may be used. First, predictions can be
used as an absolute estimate of the probability of
a species occurring at a site. That is, the predicted
probabilities are used at face value. Second, pre-
dictions can be used merely as a relative index of
likelihood of occurrence, where higher values indi-
cate sites more likely to be occupied by the spe-
cies. Third, predicted probabilities can be
converted to predicted presence/absence by apply-
ing a threshold to the predicted probability range.
Each of these uses requires knowledge of different
components of predictive performance.

If the predictions are to be used at face value,
for example to estimate the total population size
for a species by predicting the probability of the
species occurring at a large set of sites within a
region, then knowledge of model calibration, bias
and spread is essential to interpret the predicted
probability values. It is important to know some-
thing about the expected magnitude and nature of
differences between predicted probabilities and
observed proportions of occurrence.

However, in many applications of logistic re-
gression models, exact estimation of the probabil-
ity of species occurrence is not required. All that
is required is an index of relative suitability of
sites within a region so that areas may be ranked
according to their importance as habitat or their
likelihood of containing the species of interest.
Examples of these applications include maps of
relative habitat suitability to aid species manage-
ment, or the ranking of priority areas within a
region for selection of conservation reserves. This
type of application requires knowledge of the
degree to which higher predicted probabilities are
associated with the presence of a species. The
discrimination index provides a summary measure
of this capability. A graph relating observed oc-
currence to predicted probability, such as that
shown in Fig. 3, can also provide useful informa-
tion on the rank order relationship between pre-
dictions and observations.

An understanding of discrimination capacity is
particularly important if a model is to be used to
delineate areas predicted to be occupied, or to
contain suitable habitat, from areas predicted to
be unoccupied, or to contain unsuitable habitat.
An understanding of model calibration is also
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important in this case to inform selection of an
appropriate threshold probability to distinguish
sites predicted to be occupied from sites predicted
to be unoccupied.

Most studies utilising the threshold probability
approach (Lindenmayer et al., 1990; Pearce et al.,
1994) have assumed that the selection of a
threshold, such as 0.5, implies that sites with a
probability greater than 0.5 will be occupied
greater than 50% of the time. However, if a model
is not well calibrated and has significant bias or
spread error, then a predicted value of 0.5 will not
relate to an observed value of 0.5, but a higher or
lower observed rate. Therefore, choosing a
threshold probability without any information on
bias and spread will greatly reduce the confidence
that can be placed in any map that is produced. If
predictions from a model tend to overestimate the
occurrence of a species, then the predicted distri-
bution will include not only areas of suitable
habitat (true positive sites) but also substantial
areas of unsuitable habitat (false positive sites).
However, if a model tends to underestimate the
occurrence of a species, then areas of potentially
occupied habitat will remain unidentified (false
negative sites). For a rare species this may have
devastating ramifications because some popula-
tions may fail to be identified and protected. The
ROC curve can also provide useful information
for selecting an appropriate probability threshold
by describing the trade-off between correctly pre-
dicting the occurrence of a species (true positive)
and incorrectly predicting the presence of the
species (false positive).

The evaluation techniques described in this pa-
per can also be used to identify aspects of a model
most in need of improvement. Each of the statis-
tics provides information on possible reasons for
a lack of agreement between predictions and ob-
servations. Calibration bias suggests that the
prevalence of the species in the model develop-
ment data and the evaluation data are different,
and can arise because of differences in methodol-
ogy between the surveys that collected these data
sets (e.g. different detection techniques, different
seasons), or differences between the regions or
environments covered by these surveys. It is im-
portant to develop models using data that are

representative of the situations in which a model
is to be applied. Lack of model refinement and the
presence of spread error suggest that important
explanatory variables are missing from the model,
that non-discriminatory variables have been in-
cluded in the model, or that weighting of variables
within the model places too much emphasis on
variables that are only weakly related to the oc-
currence of the species in the validation data.
Lack of discrimination ability usually arises be-
cause the explanatory variables in the model are
not strongly associated with the presence of the
species. Fielding and Bell (1997) provide a de-
tailed discussion of potential sources of classifica-
tion error in ecological applications, and their
effect on the classification ability of a model.

The model evaluation techniques described in
this paper can play an important role in the
development and application of models for con-
servation planning and wildlife management.
Such evaluation needs to be included routinely as
part of the model development process. Models
cannot be applied confidently without knowledge
of their predictive accuracy and the nature and
source of prediction errors.
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