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Abstract 23 

The instability of an inviscid, baroclinic vertically sheared current of uniform 24 

potential vorticity, flowing along a uniform topographic slope, becomes linearly unstable at 25 

all wave numbers if the flow is in the direction of propagation of topographic waves. The 26 

parameter region of instability in the plane of scaled topographic slope versus wavenumber 27 

then extends to arbitrarily large wavenumbers at large slopes.  28 

The weakly nonlinear treatment of the problem reveals the existence of a nonlinear 29 

enhancement of the instability close to one of the two boundaries of this narrow unstable 30 

region. Since the domain of instability becomes exponentially narrow for large 31 

wavenumber it is unclear how applicable the results of the asymptotic, weakly nonlinear 32 

theory is since it must be limited to a region of small supercriticality.  33 

This question is pursued in that parameter domain through the use of a truncated 34 

model in which the approximations of weakly nonlinear theory are avoided. This more 35 

complex model demonstrates that the linearly most unstable wave in the narrow wedge in 36 

parameter space is nonlinearly stable and that the region of nonlinear destabilization is 37 

limited to a tiny region near one of the critical curves rendering both the linear and 38 

nonlinear growth essentially negligible.  39 

 40 

 41 

 42 

 43 

 44 
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 46 

1. Introduction 47 

The problem of the instability of coastal currents has a long history. See, for example, 48 

Barth, 1989 and Brink 2012 and references therein. Part of the fascination of the problem 49 

lies in the effects that topography has on the instability. The interplay between classic 50 

baroclinic instability and topographic wave dynamics results in some non-intuitive results 51 

that were first discussed by Blumsack and Gierasch in 1972 in the context of linear stability 52 

theory. I will briefly review their work in the next section but the essential result is a 53 

surprising one. When the normally stabilizing effect of sloping topography is added to the 54 

classic model of Eady (1949), the short wave cut-off in that problem is eliminated and all 55 

wave numbers in this inviscid model become unstable when the direction of the shear 56 

coincides with the direction of propagation of topographic Rossby waves. Since in the 57 

model the flow is in geostrophic balance this is equivalent to the condition that the slope of 58 

the bottom has the opposite sign to the slope of the isopycnals of the shear flow. 59 

The unstable domain in the parameter space delineated by the critical value of the 60 

ratio of those slopes extends to all wave numbers but becomes increasingly narrow for 61 

large wavenumbers. Furthermore, the fact that in the region between the two boundaries of 62 

this narrow space of instability, the growth rate has a maximum implies that moving from 63 

one of the boundaries into the parametric interior of the region by decreasing the shear 64 

enhances the instability. This suggests that if the effects of nonlinearity due to the 65 

instability reduce the shear, as expected for baroclinic instability, the result could be a 66 

nonlinear destabilization. Such an effect was observed in a simple two-layer model by 67 

Steinsaltz (1987) who used weakly nonlinear theory. However, for large wavenumbers the 68 
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vertical scale of the perturbation becomes less than the finite layer thickness in the two-69 

layer model leading to questions about the validity of the result. Also, weakly nonlinear 70 

theory is limited to an asymptotically small region near the marginal stability curve, and as 71 

is demonstrated below, the two marginal curves asymptotically approach the centerline of 72 

the wedge shaped region. It is thus not clear how small the region of validity of the 73 

asymptotic, weakly nonlinear theory might be and even its qualitative importance. 74 

The present study is an attempt to clarify the nonlinear problem. Section 2 reviews 75 

the basic model, which has continuous stratification, and the nature of the resulting linear 76 

problem. It also describes the resonance condition that is at the heart of the instability at 77 

high wavenumbers. Section 3 describes the results of weakly nonlinear theory for the 78 

continuous problem and demonstrates the possibility of nonlinear instability in some region 79 

asymptotically close to one of the stability boundaries. Section 4 describes a spatially 80 

truncated but fully nonlinear model to determine the nature of the nonlinear behavior for 81 

the most-unstable wave in the center of the unstable parameter region. Section 5 82 

summarizes the fundamental results. 83 

2. The model and linear theory 84 

The basic flow whose stability is at issue is a flow in the x direction with uniform 85 

vertical shear in the z direction of the form 86 

                                u=Uzz 0≤ z≤D         (2.1) 87 

The current is contained in a channel whose width in the y direction is L. The 88 

stratification is constant with a uniform buoyancy frequency N. The elevation of the 89 

topography is given by hb (y)  and which is a linearly decreasing function of y, i.e. 90 

 
 

dhb
dy

= s< 0       (2.2) 91 
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where s  is a constant. The critical parameter of the problem is the ratio of the bottom slope 92 

to the slope of the isopycnals. Since the flow is in geostrophic balance this ratio can be 93 

easily shown to be 94 

    

  

ZT =
s
∂z
∂y
⎞

⎠
⎟⎟⎟⎟
ρ

= sN 2 / fUz     (2.3) 95 

where f is the constant Coriolis parameter.  Since in the problem of interest, ZT is negative, 96 

it is convenient to introduce the positive parameter   αT =−ZT > 0 . Scales for velocity, 97 

horizontal lengths, vertical length and time are chosen to be UzD,L,D ,L /UzD  98 

respectively. The scale for the geostrophic streamfunction is simply the velocity scale times 99 

L. Since the potential vorticity of the basic state is a constant, the potential vorticity 100 

remains constant in the absence of sources or sinks as in this problem. The generally finite 101 

amplitude perturbation to the basic flow is  ϕ(x, y, z,t)  and satisfies the constraint that the 102 

perturbation potential vorticity must remain zero, and hence  ϕ  satisfies 103 

   

  

ϕzz +S ∂
2

∂x2
+
∂2

∂y2
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ϕ= 0,

S= N 2D2 / f 2L2
    (2.4 a ,b) 104 

In (2.4a) and what follows, subscripts generally indicate differentiation and it should be 105 

obvious from context. 106 

The boundary conditions for (2.4) are that on y = 0,1, the sidewalls containing the 107 

flow,  ϕ  =0. On the horizontal boundaries the boundary condition is that on the upper, level 108 

boundary, the vertical velocity vanishes. Hence on z =1, combining the condition for 109 

conservation of density, with the hydrostatic approximation and geostrophy, we obtain the 110 

condition,   111 

 112 
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∂ϕz
∂t

+ϕzx−ϕx + J(ϕ,ϕz )= 0 ,       z =1.   (2.5a) 113 

where the Jacobian, J,  of the two functions in parentheses is with respect to x and y. 114 

 115 

On the lower boundary, where the slope induces a vertical velocity, the condition of no 116 

normal flow to the boundary can be written as, 117 

  
  

∂ϕz
∂t
−(1+αT )ϕx + J(ϕ,ϕz )= 0     (2.5b) 118 

Note that the second term in (2.5a) the advection of the perturbation by the basic flow is 119 

missing in (2.5b) since the basic flow is zero there. The third term on the LHS of (2.5a) 120 

involves the vertical shear of the basic flow, which is unity in our scaled system. In (2.5b) 121 

that term is supplemented by the term  αT  representing the topographic production of 122 

vertical velocity by perturbation flow in the y direction up the shelf-like topography. 123 

For the linear problem for small perturbations, the Jacobian term, of second order in 124 

the amplitude of the perturbations, can be ignored. The resulting linear equations admit 125 

wave like solutions of the form 126 

  

ϕ= A(coshµ(z−1)+bsinhµ(z−1))eik (x−ct ) sin(nπy)    (2.6) 127 

where A  and b are arbitrary constants, n is an integer, and 
  
µ2 = S k2 +n2π2( ) . The 128 

boundary conditions on y = 0,1 are satisfied by the form (2.6) while the boundary 129 

conditions (2.5 a, b) lead to the dispersion relation for c, whose solution yields two roots 130 

for c, 131 

 132 

  
c=

1
2
1+αT

cothµ
µ

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟±

1
4
1+αT

cothµ
µ

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

2

−(1+αT )
cothµ

µ
−
1

µ2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1/2

 (2.7) 133 
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The perturbation becomes unstable when the radicand on the RHS of (2.7) becomes 134 

negative and the condition that the radicand is just zero provides the critical curves 135 

delineating the boundaries of the unstable domain. It follows that those curves are given by, 136 

 137 

  
αTcrit = µ tanhµ−2 tanhµ ±2 µ tanhµ− tanh2 µ)(1− tanh2 µ( )⎡

⎣⎢
⎤
⎦⎥
1/2

   (2.8) 138 

 139 

Figure 1a shows the stability diagram. Note that for negative values of  αT , for which the 140 

shear is in the direction opposed to the propagation direction of topographic waves, the 141 

domain of instability is localized and has a short wave cutoff similar to the Eady problem, 142 

and that strong enough topographic slope will always stabilize the flow. On the other hand, 143 

positive values of the parameter  αT , representing shears in the direction of the topographic 144 

wave propagation are unstable for all values of  αT , i.e. there is no topographic slope large 145 

enough, or shears small enough to render the flow stable (ignoring friction).  The domain of 146 

instability, as can be seen in Figure 1a, becomes increasingly narrow at large values of the 147 

total wavenumber µ. Indeed, for large µ the boundaries of the domain delineate a thin sliver 148 

given by, 149 

 150 

  αTccrit ≈µ−2± 4(µ−1)1/2e−µ + ...    (2.9) 151 

 152 

Figure 1b shows the growth rate for a value of µ = 3.5 as a function of  αT in the 153 

unstable sliver. The growth rate has its maximum at the center of the interval near the 154 

centerline of the sliver at   µ−2  and also becomes exponentially small as a function of 155 

wave number for large µ. In fact on the centerline where   αT = µ−2 , the growth rate for 156 
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large µ goes like   2k /µ
1/2e−µ .  The double boundary for the unstable region when  αT is 157 

positive on both branches (which coincides roughly with wavenumbers greater than the 158 

Eady shortwave cutoff) has interesting implications for it means that moving into the 159 

unstable region from the lower boundary shows the growth rate increasing with decreasing 160 

shear (or increasing topographic slope). This raises the possibility that the effects of 161 

nonlinearity, which we anticipate would, among other things, lower the shear as the 162 

horizontal density gradient is reduced by the instability, might increase the growth rate 163 

leading to a nonlinear enhancement of the instability instead of producing a limit to the 164 

growth. 165 

On the other hand, a different interpretation is that the growth rate is increased the 166 

closer we get to the center line which is a locus of resonance of the perturbation with the 167 

topographic wave which can be seen from the following standard argument (see for 168 

example, Vallis, 2006).  169 

If we suppose the two horizontal boundaries are well separated, which is equivalent to 170 

examining perturbations with large µ, each boundary can independently support a 171 

boundary-trapped, exponentially decaying wave. For the upper boundary, the wave sees the 172 

potential vorticity equivalent of the horizontal temperature gradient and the boundary 173 

condition  (2.5a) in its linear form yields a phase speed, 174 

 175 

  
cupper =1− 1µ      (2.10a) 176 

while the lower boundary supports a wave whose speed is determined by the joint effect of 177 

the topography and shear. This leads to a wave, exponentially decaying from the lower 178 

boundary moving with phase speed, 179 
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clower =

1+αT
µ

      (2.10b) 180 

When the two boundaries are close enough so that at least a weak interaction between the 181 

two waves are possible an instability may result and the condition that allows that is that 182 

the two speeds in (2.10 a, b) coincide leading to the condition that  183 

  αT = µ−2       (2.11) 184 

which is the equation for the center line that the two boundaries of the unstable domain 185 

approach for large wavenumber, consistent with (2.9). Note that in the absence of 186 

topographic slope (2.10) would simply yield an approximation to the Eady short wave cut-187 

off. Also, as we have seen, the growth rate increases the closer the slope approaches the 188 

value given by (2.11).  Hence a nonlinearity that detunes a wave mode from the centerline 189 

might be expected to stabilize the flow even if shear is reduced by nonlinearity. The 190 

following two sections, devoted to the nonlinear theory will examine this question, 191 

especially the question of detuning. First we take up the results of weakly nonlinear theory. 192 

 193 

3. Weakly nonlinear theory 194 

For values of  αT  that are near either one of the boundaries of the unstable regime an 195 

asymptotic method based on the presumption of slow growth and small amplitude provides 196 

an analytical approach to this weakly nonlinear problem. The basic method exploits the 197 

method of multiple time scales as described in Pedlosky (1970). The key to the 198 

development is to consider the perturbations as a function of both a fast time, t, and equal 199 

to the (inverse) real frequency of the wave along the marginal curve, and a slow time, T, 200 

determined by the weak growth rate.  A similar approach was used in the two-layer version 201 

of this problem by Steinsaltz (1987), but for large wavenumbers the vertical scale of the 202 
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perturbation in the continuous model rapidly becomes small compared to the layer depths 203 

rendering the analysis problematic if still qualitatively suggestive. 204 

Thus, we consider values of  αT  that are near its critical value,  αTC , along either one 205 

of the marginal curves in the region µ > 2 so that    αT =αTC +Δ, Δ≪ αTC . Note that 206 

 Δwould be positive entering the unstable sliver from the lower curve and negative 207 

entering from the upper branch. 208 

The equation for the geostrophic streamfunction remains (2.4) since there are no 209 

sources or sinks of potential vorticity in the interior of the fluid; thus, 210 

    211 

    
  
ϕzz +S ϕxx +ϕyy( )= 0.    (3.1) 212 

The geostrophic streamfunction is considered a function of both t and T so that the 213 

total stream function including the mean flow and the small perturbation is  214 

  ψ=−zy+εϕ(x, y, z,t,T )      215 

 (3.2) 216 

where ε is of order 
 
Δ

1/2
. This leads to a restatement of the upper boundary condition as, 217 

  218 

  

∂ϕz
∂t

+ Δ1/2 ∂ϕz
∂T

+ϕzx−ϕx +εJ(ϕ,ϕz )= 0   z=1 (3.3a) 219 

 220 

while the condition a z =0 becomes, 221 

  

∂ϕz
∂t

+ Δ 1/2 ∂ϕz
∂T
−(1+αTC +Δ)ϕx +εJ(ϕ,ϕz )= 0         z=0. (3.3b) 222 

and where  αTC is given by either of the two branches of (2.8). Since ε is a small parameter 223 
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the perturbation stream function is expanded in an asymptotic power series 224 

    ϕ=ϕ(0) +εϕ(1) +ε2ϕ(2) + ...     (3.4) 225 

where   ε=O(Δ 1/2 ) . 226 

 227 

Note that we can only expect that the expansion is asymptotic, not convergent, and so its 228 

validity is limited to a small region, whose extent is unknown, near each of its respective 229 

critical curve. What happens on the centerline, where the growth rate has its maximum 230 

cannot be anticipated on the basis of the theory developed in this section. 231 

The first step in carrying out the expansion in (3.4) yields the order one problem, i.e. 232 

the problem for the neutral wave on each of the critical curves. As before we will write the 233 

solution for the wave perturbation as 234 

   ϕ
(0) = A(T )sinπyF(z)eik (x−sot ) +*      (3.5) 235 

where the asterisk connotes the complex conjugate of the preceding expression and 236 

  F(z)= sinhµ(z−1)+bo coshµ(z−1)      (3.6 a,b) 237 

  
µ = S(k2 +π2 )⎡
⎣

⎤
⎦
1/2

 238 

Here, so is the phase speed at one or the other of the critical curves. 239 

 
  
so =

1
2
1+αTc

cothµ
µ

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟       (3.6c) 240 

Note that in (3.5) I have chosen the smallest value of the cross-stream mode number, n =1, 241 

since it is the linearly most unstable mode. The order one problem yields both so and the 242 

constant  243 

    bo = µ(1− so )        (3.7) 244 

and it is important to note that F is a real function. 245 
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The order ε  problem is: 246 

 247 

 

  

ϕ(1)zz +S(ϕ(1)yy +ϕ(1)xx )= 0;

ϕzt
(1) +ϕ(1)zx−ϕ

(1)
x =−

Δ 1/2

ε
dA
dT

µeik (x−sot ) sinπy, z=1,

ϕ(1)zt−(1+αTC )ϕ
(1)
x =−

Δ 1/2

ε
dA
dT

µ coshµ−bo sinhµ[ ]eik (x−sot ) sinπy, z= 0

(3.8 a, b, c) 248 

 249 

Note that there is no contribution at this order (ε) from the nonlinear terms. Since the 250 

function F(z) is real the Jacobian   J(ϕ
(0),ϕz

(0) )= 0 .  251 

Solutions to (3.8a) can be found in the form 252 

   ϕ
(1) = {a1 sinhµ(z−1)+b1 coshµ(z−1)}eik (x−sot ) sinπy    (3.9) 253 

Inserting (3.9) into the boundary conditions (3.8 b, c) yields the two equations , 254 

 255 

 

  

b1 =
Δ 1/2

ikε
µ
dA
dT

+ µ(1− so )a1,

−soµ a1 coshµ−b1 sinhµ[ ]−(1+αTC )(b1 coshµ−a1 sinhµ)

=−
Δ 1/2

ikε
dA
dT

coshµ−b1 sinhµ( )

  (3.10 a, b) 256 

With some algebra, and using the dispersion relations for so, it can be shown that the 257 

two equations are redundant. As in Pedlosky (1970) this is related to the necessary 258 

condition for instability of the system. Since the equations are redundant, one of a1,b1  can 259 

be arbitrarily chosen to be zero. Here we choose a1 to be zero leading to the solution at this 260 

order, 261 
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 262 

  
ϕ(1) =

µ
ik
Δ 1/2

ε
dA
dT
coshµ(z−1)eik (x−sot ) sinπy+*+Φ(1)(y, z,T )    (3.11) 263 

which represents a phase shift in the wave proportional to the slow time evolution of the 264 

wave amplitude. We have also added, at this order  Φ(1) , a streamfunction representing a 265 

correction to the zonal flow that needs to be determined at the next order. 266 

It is useful to think of the wavy part of the solution as 267 

   268 

  

ϕ12 = eik (x−sot ) sinπyG(z,T ),

G= A(T )F(z)+ε µ
ik
Δ 1/2

ε
dA
dT
coshµ(z−1)

    (3.12) 269 

The important point is that both G and it complex conjugate are a solutions of the equation 270 

for the vertical structure of the wave perturbation, 271 

    Gzz−µ2G= 0       (3.13) 272 

It therefore follows that the Wronskian of the function G and its complex conjugate is 273 

independent of z, i.e. that 274 

 
 

d
dz

GG*
z−GzG⎡

⎣
⎤
⎦= 0.                                                        (3.14) 275 

This has importance because the Jacobian of  ϕ  and  ϕz is proportional to the Wronskian. 276 

So, just as in the Eady problem, the heat flux is independent of z within the fluid and, in 277 

particular, is the same at both boundaries, z = 0,1. This has implications for the structure of 278 

the correction to the mean flow, and it also implies that the forcing term for that correction 279 

by the growing wave field is the same at both boundaries. Indeed a straight forward 280 

calculation shows that at order   ε
2 =O Δ( )  the part of the nonlinear forcing on the 281 

boundary independent of x leads to the condition for the mean flow correction, 282 
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 283 

 
  

∂Φ(1)z
∂T

=−µ2π
Δ 1/2

ε
d A 2

dT
sin2πy, z= 0,1    (3.15 a, b) 284 

while in the fluid interior, 285 

   Φ
(1)
zz +Φ(1)yy = 0       (3.16a) 286 

Integrating (3.15) with respect to time yields as a boundary condition, 287 

 
  
Φ(1)z =−µ2π A 2− Ao

2( )sin2πy, z= 0,1    (3.16 b,c) 288 

where Ao  is the initial value of the O(1) wave amplitude. 289 

It follows that the structure of the mean flow correction to the vertical shear will be 290 

symmetric about the mid-point in z while the correction to the velocity will be anti-291 

symmetric, i.e. purely baroclinic. 292 

 The boundary condition for the mean flow correction at y =0,1 is the absence of a 293 

velocity normal to the boundary. Since  Φ(1)  is independent of x has no geostrophic velocity 294 

in the y direction but it does have an ageostrophic velocity. To ensure that the ageostrophic 295 

y velocity vanishes the condition  296 

  

∂Φ(1)y
∂T

= 0, y= 0,1    (3.17) 297 

must be satisfied,  (Pedlosky, 1970). This leads to a solution for the mean flow correction 298 

in terms of the wave amplitude, 299 

 300 

 

  

Φ(1)(y, z,T )= Φj (T )cos jπy coshmjz−coshmj (z−1)⎡
⎣

⎤
⎦

j=1

Jmax

∑ ,

Φj =
µ2 A 2− Ao

2⎡
⎣⎢

⎤
⎦⎥

mj sinhmj

4
4− j2
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ 1−(−1)

j( ),

mj = S1/2 jπ.

 (3.18) 301 



 15 

The upper limit of the sum in (3.18) is, in principle, infinite but the rapidly convergent 302 

series is accurate for a value of Jmax of order 10. Note that all even j terms in the sum are 303 

zero. From (3.18) and (3.16) it is easy to verify that when the wave amplitude exceeds its 304 

initial value the shear of the mean flow is reduced in a region around the center of the 305 

channel at y  = ½, where the order one eigenfunction has its maximum. 306 

With the  O(ε
2 )  correction to the zonal flow determined by (3.18) the next step is to 307 

consider the wave field at the same order, i.e.  ϕ
(2) . The second order correction to the wave 308 

disturbance also satisfies (3.1) so the solution can be written: 309 

 310 

   ϕ
(2) = A2 sinhµ(z−1)+b2 coshµ(z−1)[ ]eik (x−sot ) sinπy   (3.19) 311 

with boundary conditions 312 

 

  

ϕ(2)=zt +ϕ(2)zx−ϕ
(2)
x =−

Δ 1/2

ε
∂ϕ(1)z
∂T
−ϕ(0)x Φ

(1)
zy +ϕ(0)zx Φ

(1)
y z=1,

ϕ(2)zt−(1+αTcrit )ϕ
(2)
x =−

Δ 1/2

ε
∂ϕ(1)z
∂T
−ϕ(0)x Φ

(1)
zy +ϕ(0)zx Φ

(1)
y +
Δ
ε2

z= 0.

(3.20 a,b) 313 

Note that it is at this order that the supercriticality of the wave, i.e. its parametric 314 

distance from its neutral curve, enters the problem for the first time. To find the amplitude 315 

evolution equation for the amplitude of the order one wave field, two algebraically intense 316 

steps must be carried out. The right hand sides of (3.20) must first be projected onto the 317 

horizontal spatial structure of the  O 1( )  wave field, i.e.   e
ik (x−sot ) sinπy . I will refer to those 318 

projections as R1 for the projection at the upper boundary at z =1 and R0 for that projection 319 

at z =0. Secondly, the condition that the projected forcing does not produce a resonance 320 

with the linear operator of the left hand side invalidating our basic expansion (3.4) can be 321 

shown, with a fair amount of algebra, to be simply, 322 
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R0 + R1 soµsinhµ−(1+αTcrit )coshµ( )= 0.     (3.21) 323 

where s0 and  αTcrit are given by (3.6c) and (2.8). Note again that there are two marginal 324 

curves given in (2.8) and our analysis refers to both. Collecting all the terms implied by 325 

(3.21) yields the following second order differential equation for the wave amplitude A 326 

from which the correction to the mean flow follows as well. After really considerable 327 

algebra we obtain 328 

 329 

 
  

1
k2
d 2A
dt 2
−
Δ
Δ
A(bo coshµ−sinhµ)+ ε

2

Δ
NLA( A

2− A0
2 )= 0.   (3.22) 330 

The form of the amplitude equation is standard and for the baroclinic problem was derived 331 

in Pedlosky (1970) and a discussion is given there of the behavior of the solutions. Suffice 332 

it to say that the second derivative in time merely reflects the inviscid, adiabatic nature of 333 

the dynamics rendering the solution reversible in time. The second term is just the square 334 

of the growth rate (divided by k) given by linear theory near the marginal curve. The last 335 

term represents the nonlinear interaction of the developing wave with the altered zonal 336 

flow. This term, cubic in the amplitude, determines the long time behavior of the wave. The 337 

principal result is the Landau coefficient, NL . If  NL  is positive the behavior is oscillatory 338 

with a period and amplitude depending on NL  and the linear growth rate. If NL is negative 339 

the nonlinearity, instead of putting a ceiling on the wave growth, will instead accelerate the 340 

growth and the amplitude will continue to grow until the amplitude is so large that the 341 

weakly nonlinear theory loses validity.  342 

The calculation of NL  follows directly from the steps outlined above. After 343 

considerable calculation we obtain. 344 
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NL = N1 +N2,

N1 = µ2π2 bo coshµ−sinhµ +bo(soµsinhµ−(1+αTcrit )coshµ⎡
⎣⎢

⎤
⎦⎥ (3.23a,b,c)

N2 =16µ3 coshµ−bo sinhµ−(soµsinhµ−(1+αTcrit )coshµ⎡
⎣⎢

⎤
⎦⎥

(1−(−1) j )2 (coshmj−1)
mj sinhmjj=1

Jmax

∑

345 

 346 

 347 

The Landau constant NL is shown in Figure 2 as a function of µ. In panel 2a the 348 

Landau constant for the upper branch of the marginal stability curve which yields the upper 349 

boundary of the unstable domain, the Landau constant is positive, shown in black, and as 350 

anticipated, the effect of the interaction of the wave with the altered mean current is 351 

stabilizing and a nonlinear oscillation results. For the weakly nonlinear theory in the region 352 

near the lower marginal stability curve the Landau constant is given by the red curve and is 353 

negative and so the nonlinear effects are destabilizing. A qualitatively similar result for the 354 

two-layer model was found by Steinsaltz (1987) but the behavior, as a function of 355 

wavenumber, is different. The decrease of the nonlinear interaction as the µ increases is not 356 

found in the two-layer model; not surprising given the inability of the layer model to 357 

accurately reflect the vertical structure for large  µ . Panel 2b of the figure shows the two 358 

components N1 and N2 of the Landau constant. The constants for the upper branch are in 359 

blue, the lower branch in red. Surprisingly, and this result is consistent with Steinsaltz 360 

(1987), the contribution of the change in the shear at the boundaries, shown as the solid 361 

blue line, on the upper branch (where the total Landau constant is positive) is negative but 362 

its contribution to NL on the upper branch is small compared to the effect of the differential 363 

advection of the perturbation density anomaly. Of course the two effects are due to the 364 

same shear reduction, that reduces the zonal velocity at the upper boundary and increases it 365 
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at the lower boundary. It is possible to rationalize this effect as a detuning of the 366 

perturbation and the topographic wave as described by (2.10) and (2.11).  367 

For the moment to aid our interpretation let’s restore the explicit representation of the 368 

shear and the velocity fields as trace constants. This would give rise, for large wavenumber 369 

to a form of (2.10 a,b) as 370 

  

cupper =U(1)−Uz
µ ,

clower =U 0( )+ (Uz +αT )
µ

    (3.24) 371 

ignoring small exponential terms in wavenumber. Equating to the two expressions for the 372 

phase speeds at large values of µ, and recalling that  αT is of order µ, yields the approximate 373 

condition that relates the position of the critical curves to the effect of the differential 374 

advection of temperature at the boundaries, dominates that of the shear,  i.e. 375 

     αTcrit ! µ(U(1)−U(0))    (3.24) 376 

Since the effects of nonlinearity are two lower the velocity at the upper boundary and 377 

increase it at the lower boundary, the effect of the differential nonlinear correction to the 378 

differential advection would be to lower each of the critical curves. For a fixed value of the 379 

slope, i.e. for fixed  αT , a point near enough to the linear theory’s upper branch would find 380 

itself in the stable region, i.e. detuned from the instability condition while a slightly 381 

unstable wave near the lower boundary would, on the contrary, find itself deeper into the 382 

unstable region. These opposing effects of the shear reduction by the nonlinearity explain 383 

the behavior of the Landau constants in Figure 2b. 384 

The more pressing question is what happens at the value of  αT associated with the 385 

peak of the growth rate, for example, at µ = 3.5 in Figure 1b? Note that this corresponds 386 

almost exactly to a value of   αT = µ−2 . The Landau constant is positive at one end of the 387 
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unstable interval on the upper branch and negative on the lower branch. Weakly nonlinear 388 

theory gives no guidance as to what to expect for the most unstable wave at the center of 389 

the unstable region. In the next section this question is examined using a non-asymptotic 390 

truncated model. 391 

 392 

4.  A nonlinear truncated model 393 

To consider a nonlinear model without the use and limitations of weakly nonlinear 394 

theory I will consider a model consisting of a single wave interacting with a variable mean 395 

flow. The growth rates in the region of interest are small and the amplitudes expected, 396 

assuming there is nonlinear equilibration, are expected to be small, so a truncation of the 397 

form of the solution seems plausible, but the assumption that the parameter  αT  is 398 

asymptotically close to one of the marginal curves is no longer valid. A consequence of this 399 

approach is that the simple relation between the wave amplitude variation with time and the 400 

production of alterations to the mean zonal current as in (3.15) is no longer valid. Such 401 

simple results require asymptotically small perturbations such that the basic wave dynamics 402 

remains linear. That assumption is here abandoned. 403 

Nevertheless, it is still true that the potential vorticity in the wave field and in the 404 

zonal mean current remains constant. Hence, both the wave field and the mean flow 405 

correction continue to satisfy (3.1). For the wave field it is convenient to write the solution 406 

as, 407 

 408 

   ϕ= A(t)coshµz+ B(t)coshµ(z−1)[ ]sinπyeikx +*    (4.1) 409 

while the zonal flow correction, a function of only y and z is, 410 

 411 
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Φ(y, z,t)= Φj (t) coshmj (z−1)−coshmjz( )cos jπy

j=1

Jmax

∑   (4.2) 412 

In (4.1) and (4.2) the symbols have the same meaning as in section 3. 413 

In (4.2) I have exploited the fact that the condition that the wave field has constant 414 

potential vorticity implies that the nonlinear forcing terms will be the same on both 415 

horizontal boundaries as in the weakly nonlinear problem and the structure in (4.2) 416 

anticipates that result. Indeed using (2.5a) and (2.5b), the equation for the zonal mean 417 

easily leads to the equation for  Φj , viz., 418 

 419 

  

dΦj

dt
= i 4kµ

mj sinhmj

sinhµ AB*−A*B( )(1−(−1)
j )

j2−4
   (4.3) 420 

 421 

The boundary conditions on z = 0 and 1 involve the projection on  sinπy  of the 422 

interaction of the wave and the correction to the zonal flow leading to the two equations, 423 

  

∂A
∂t

µsinhµ + ikAµsinhµ− ik(Acoshµ + B)

+ik(Acoshµ + B)2 Φzy sin
2 πydy

0

1

∫ − ik2 Φy sin
2 πydy

0

1

∫ = 0
  (4.4a) 424 

and 425 

 426 

 427 

  

∂B
∂t

µsinhµ + ik(1+αT )(A+ Bcoshµ)(1−2 Φzy sin
2 πydy)

0

1

∫

−ikµBsinhµ2 Φy sin
2 πydy

0

1

∫ = 0

            (4.4 b) 428 

 429 
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Carrying out the integrals in (4.4 a, b) and using (4.2) yields the final equations for A 430 

and B, namely, 431 

 432 

  

dA
dt

µsinhµ + ikAµsinhµ− ik(Acoshµ + B)

−ik(Acoshµ + B)S1 + ikAµsinhµS2 = 0
                     (4.5a,b) 433 

  

dB
dt

µsinhµ + ik(1+αT )(A+ Bcoshµ)(1+S1)− ikBµsinhµS2 = 0  434 

 435 

S1and S2  are sums involving the mean flow corrections and are 436 

 437 

 

  

S1 = 4 Ψ j
(1−(−1) j )
j2−4j=1

Jmax

∑ ,

S2 = 4 Ψ j
(1−(−1) j )
j2−4j=1

Jmax

∑
coshmj−1
mj sinhmj

,

and
Ψ j =Φjmj sinhmj

     (4.6 a, b, c) 438 

Equations (4.4), (4.5) with (4.6) complete the nonlinear truncated model. 439 

I will make one final alteration in this system of equations. We can anticipate that in 440 

the narrow parameter region between the two marginal curves the real part of the phase 441 

speed will be close to what is given by linear theory and not much altered by the presence 442 

of the slower evolution due to the relatively weak instability and its accompanying 443 

nonlinearity. To keep the representations of the solutions from being complicated by this 444 

relatively rapid linear oscillation, I will make the transformation 445 

    A= Aoe
−iksot , B= Boe

−iksot     (4.7) 446 
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and present the results for Ao and Bo . The alterations of (4.5 a, b) are obvious and not 447 

shown here for the sake of brevity. Note that the form of (4.3) is unchanged if written in 448 

terms of the new amplitudes Ao and Bo. 449 

Figure 3 shows the amplitude evolution of both the real and imaginary parts of A and 450 

B for µ = 3.5, the case discussed in the previous section. However, in Figure 3 the value of 451 

 αT is now chosen to be 1.5, which, as seen in Figure 1b, is the value associated with the 452 

maximum of the linear growth rate.  453 

The first panel Figure 3a shows the evolution of the linearized system, i.e. the system 454 

ignoring the nonlinear interactions at the maximum growth rate. The evolution is plotted 455 

against kt so that k does not appear in the final equations. Note that 456 

  k
2 /π2 = (µ2 /m2

1−1)so that its value is implicit given m1and µ. 457 

The exponential growth is evident.  Figure 3b shows the evolution of the amplitudes 458 

when the interaction of the wave with the altered mean flow is included and the exponential 459 

growth is halted and a nonlinear oscillation of the amplitude is evident. The first 3 460 

components of the  Ψ j (t)are shown in figure 3c. They, too, are periodic and the signs are 461 

such that all first two, which are dominant, represent a decrease of the shear in the center of 462 

the channel where the eigenfunction is a maximum. We see that the linearly most-unstable 463 

perturbation is definitely stabilized by the nonlinear, wave- mean- flow interaction.  464 

This raises the question of the extent of the region of validity of the asymptotic, 465 

weakly nonlinear theory near the lower branch where the weakly nonlinear theory predicts 466 

that nonlinear  effects would not stabilize the perturbations. For µ =3.5, the lower branch 467 

corresponds to a value of  αT = 1.302. Figure 4a shows the result of the nonlinear truncated 468 

model at  αT = 1.311, i.e. only slightly into the unstable region. Since the growth rates and 469 



 23 

amplitudes are so small in this region the calculation is carried out until kt = 4000. It 470 

appears that the effects of nonlinearity are still mildly stabilizing compared to the linear 471 

calculation, not shown here, which yields evident exponential growth after kt = 3000. Here 472 

there is still growth but is weaker, at least to this point in time. For a very slightly larger 473 

value of  αT =1.34 the nonlinearity is definitely stabilizing as show in Figure 4b. Hence, 474 

around the lower branch the region of validity of the weakly nonlinear theory seems to be 475 

very limited and the general qualitative result would appear to indicate that the interaction 476 

with the altered mean flow is generally stabilizing. Calculation around the upper branch 477 

reveal, as expected that it the interaction is stabilizing there as well. 478 

Nevertheless, in all cases the nonlinearity does not quench the growth and finite 479 

amplitude perturbations, at least in inviscid theory, persist into regions in which the flow 480 

would be definitely stable in the absence of bottom topography. Again, this occurs when 481 

the direction of the shear is identical to the direction of the propagation of topographic 482 

waves when no shear is present. 483 

 484 

5. Summary and discussion 485 

The apparently paradoxical result that the addition of what is generally considered to 486 

be a stabilizing agent for quasi-geostrophic instabilities, namely uniform bottom slope, can 487 

actually destabilize a baroclinic current is shown to involve a type of resonance of the 488 

current shear with topographic waves. The presence of the shear produces waves on both 489 

boundaries, understandable since the horizontal density gradients responsible for the shear 490 

can act as surface potential vorticity gradients. Indeed, in layer models the identification is 491 

exact. When these shear-induced waves resonate with the topographic wave an instability 492 

well beyond the short wave cutoff of the Eady problem results. Our discussion has revealed 493 



 24 

that weakly nonlinear theory, limited to asymptotically small regions near the marginal 494 

curves, can be qualitatively misleading. The nonlinear destabilization resulting near the 495 

lower of the two branches of the stability marginal curve is limited to a very small region. 496 

For more robustly unstable waves near the center of the region the nonlinearity has been 497 

shown to be stabilizing. 498 

Since the linear growth rates in this extended domain are small and the wavenumbers 499 

are large, it is natural to wonder whether the effects of friction render these results of small 500 

importance in spite of their intrinsic interest. However, if the friction is primarily the result 501 

of a bottom Ekman layer type of interaction, the frictional effect relative to the inertial 502 

effects driving the instability actually diminish as the wavelength increases.  503 

 504 
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Figures 521 

Figure 1 a) The critical curves in the  µ,αT  plane. b) The growth rate as a function of α Τ  for 522 

µ = 3.5. 523 

 524 

Figure 2 a) The Landau constant, NL , as a function of µ for both branches of the stability 525 

curve. b) The two components of each of the Landau constants. The dotted curves 526 

relate to the contribution to the Landau constant of the  nonlinear differential 527 

advection on the top and bottom surfaces while the solid lines are due to the 528 

change in the shear on those surfaces.  529 

 530 

Figure 3 a) The time evolution of the linear system at   αT =1.5,µ = 3.5 corresponding to 531 

the maximum growth rate for that value of µ. The real part of A  is shown as the 532 

black solid line, its imaginary part is black and dashed; the real part of  B is red, 533 

the imaginary part is blue. b) The nonlinear case. c) For the nonlinear case the time 534 

history of the first 3 amplitudes of the cosine expansion of the mean field stream 535 

function are shown. 536 

 537 

Figure 4 a) The evolution of the perturbation amplitudes at  αT =1.311, slightly into the 538 

unstable region from the lower branch. The effects of nonlinearity are alter the 539 

linear evolution (which is exponential) but does not stabilize the perturbation. b) 540 

The same calculation for  αT = 1.34 for which it is clear that the interaction with the 541 

mean flow is stabilizing.  542 

543 
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a) 544 

 545 

 546 

 547 

b) 548 

 549 

Figure 1 a) The critical curves in the  µ,αT  plane. b) The growth rate as a function of α Τ f for µ = 3.5. 550 
 551 
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a) 552 

 553 

b) 554 

 555 

Figure 2 a) The Landau constant, NL , as a function of µ for both branches of the stability curve. b) The two 556 
components of each of the Landau constants. The dotted curves relate to the contribution to the 557 
Landau constant of the  nonlinear differential advection on the top and bottom surfaces while the 558 
solid lines are due to the change in the shear on those surfaces.  559 

 560 
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a) 563 
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b) 565 
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 571 

c) 572 

 573 

 574 

 575 

 576 

 577 

 578 

Figure 3 a) The time evolution of the linear system at   αT =1.5,µ = 3.5 corresponding to the maximum 579 
growth rate for that value of µ. The real part of A  is shown as the black solid line, its imaginary part is black 580 
and dashed; the real part of  B is red, the imaginary part is blue. b) The nonlinear case. c) For the nonlinear 581 
case the time history of the first 3 amplitudes of the cosine expansion of the mean field stream function. 582 
 583 
 584 
 585 
 586 
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 587 
 588 
 589 
a) 590 

 591 
b) 592 
 593 

 594 
 595 
 596 
Figure 4 a) The evolution of the perturbation amplitudes at  αT =1.311, slightly into the unstable region from 597 

the lower branch. The effects of nonlinearity are alter the linear evolution (which is exponential) 598 
but does not stabilize the perturbation. b) The same calculation for  αT = 1.34 for which it is clear 599 
that the interaction with the mean flow is stabilizing.  600 

601 
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