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Abstract High-resolution sedimentary paleoclimate proxy

records offer the potential to expand the detection and analysis

of decadal- to centennial-scale climate variability during

recent millennia, particularly within regions where traditional

high-resolution proxies may be short, sparse, or absent.

However, time uncertainty in these records potentially limits a

straightforward objective identification of broad-scale pat-

terns of climate variability. Here, we describe a procedure for

identifying common patterns of spatiotemporal variability

from time uncertain sedimentary records. This approach,

which we term Monte Carlo Empirical Orthogonal Function

analysis, uses iterative age modeling and eigendecomposition

of proxy time series to isolate common regional patterns and

estimate uncertainties. As a test case, we apply this procedure

to a diverse set of time-uncertain lacustrine proxy records

from East Africa. We also perform a pseudoproxy experiment

using climate model output to examine the ability of the

method to extract shared anomalies given known signals. We

discuss the advantages and disadvantages of our approach,

including possible extensions of the technique.

Keywords Paleoclimate � Africa � Empirical orthogonal

functions � Monte Carlo � Uncertainty � Geochronology

1 Introduction

Large-scale climate reconstructions over the last two mil-

lennia (the ‘Common Era’) often rely on the use of climatic

proxies that are precisely dated, annually resolved, and

overlap with instrumental climate data: e.g. tree rings,

corals, varved sediments and annually-layered ice cores

(e.g. Fritts et al. 1971; Fritts 1991; Cook et al. 1994, 1999,

2010; Mann et al. 1998; Evans et al. 2002; Esper et al.

2002; Hegerl et al. 2007; Jansen et al. 2007; Jones et al.

2009). Such proxies have an advantage in that they can be

reliably calibrated and statistically validated against the

instrumental record and are known to reflect seasonal to

centennial climate variability. However, one potential

disadvantage of this class of proxy archives is that, with

some exceptions, they are relatively short in duration; for

instance, the longest continuous coral records span

approximately 300–400 years (Gagan et al. 2000; Lough

2010) and the majority of tree ring chronologies cover the

last millennium or less (with some notable exceptions, e.g.

LaMarche 1974; Pilcher et al. 1984; Lara and Villalba

1993; Cook et al. 2000; Grudd et al. 2002; Salzer and

Hughes 2007; Büntgen et al. 2011). Thus, reconstructions

relying on such archives may not completely capture low

frequency climate variability at multi-centennial time

scales (e.g. Cook et al. 1995) or they may span only a

portion of the Common Era. Perhaps of greater concern,

however, is that there are areas on Earth where traditional

high-resolution climate archives are sparse or thus far

unavailable, including some terrestrial tropical regions

where trees do not form reliable annual rings and over

much of the global ocean.

Lake and ocean sediment records provide a source of

long, continuous climate records that retain low-frequency

variability, and in doing so can fill in gaps in the climate
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history of the late Holocene left by annually-resolved

archives in both time and space. Sediment archives also have

an advantage in that they are available over much of the

Earth’s surface. A primary limitation of sedimentary

archives, however, is that they typically lack annual resolu-

tion and are only rarely absolutely dated. Sedimentary

records often rely instead on radiometric dating methods

(e.g. 14C, 210Pb) which endow the archive with an uncer-

tainty in time related to both the precision of the dating

method and the density of dates down the length of the core.

In particular, radiocarbon (14C) dating via accelerated mass

spectrometry (AMS) typically carries an analytical error on

the order of 20–50 years, and this is compounded with the

uncertainty involved in translating radiocarbon years to

calendar years, a relationship that varies depending on the

modulation of the atmospheric production rate of 14C. When

the 14C year/calendar year relationship deviates significantly

from a one-to-one relationship—for instance, during the

Maunder Minimum (1645–1715 CE) when the 14C concen-

tration in the atmosphere was anomalously high—radiocar-

bon dating uncertainty may exceed 100 calendar years.

While such uncertainty may be relatively inconsequential for

the interpretation of sediment proxies on the orbital or multi-

millennial scale, on shorter timescales such as the last mil-

lennium it presents a problem: it becomes difficult to

establish the precise timing of major climate events on the

decadal, multi-decadal, and centennial scale, or to determine

whether two or more time series are coherent and record

common regional changes in climate. Furthermore, in order

for statistically calibrated and validated climate reconstruc-

tions to combine lower-frequency time uncertain records

with high-frequency, absolutely-dated time series—an

approach that is increasingly being explored (e.g. Moberg

et al. 2005; Kaufman et al. 2009)—there needs to be a robust

way to account for the time-uncertainty introduced by sedi-

ment records. Within an individual sediment core, time

uncertainty can be reduced by dating sedimentary units

densely enough such that the overlapping dates are reduced

in their uncertainty by the principle of stratigraphic super-

position, or such that the raw 14C dates can be tightly ‘wig-

gle-matched’ directly to the 14C production curve (Blaauw

et al. 2003). However, given the high analytical costs of 14C

analysis, this is not always a practical approach.

Here, we present a simple, transparent and broadly-

applicable procedure that can be used to assess time

uncertainty in proxy records while identifying coherent

spatiotemporal variability between multiple independent

time-uncertain time series. This approach, which we call

‘‘Monte Carlo Empirical Orthogonal Function’’ (MCEOF)

analysis, iteratively calculates depth-to-age models for

each respective time-uncertain proxy record of interest

taking into account individual age model constraints, then

decomposes the set of records into patterns in space and

amplitude principal components series in time. By itera-

tively conducting many thousands of simulations, we are

able to assess the robustness and estimate uncertainty

surrounding patterns of paleoclimate change defined by

time-uncertain records in both time and space. Further-

more, the simulations offer a method by which to empiri-

cally and statistically assess the synchronicity of major

abrupt climate events recorded in disparate proxy datasets,

including abrupt droughts or pluvials.

As proof of concept, we apply this technique to seven

lacustrine paleohydrological reconstructions from East

Africa. East Africa is a region where annually-resolved

archives are thus far relatively sparse: in particular, tree-ring

archives are few (Stahle 1999; Verschuren 2004). Rather,

most of the paleoclimatic data from this region are proxies

measured in lake sediment cores, the majority of which are

dated using radiometric techniques (e.g. Verschuren et al.

2000; Stager et al. 2005; Russell and Johnson 2007). The

East African region is thus as an ideal target for MCEOF

analysis. We further evaluate the skill of our technique in

recovering coherent large-scale climate variability using a set

of ‘pseudoproxies’—simulated time series intended to mimic

the actual proxy records (Evans et al. 1998; Smerdon

2012)—generated from a last millennium climate model

simulation. Here, we focus on discussing how application of

MCEOF to East African hydroclimate reconstruction illus-

trates the capabilities and limitations of the technique. The

large-scale climatic implications of the MCEOF analysis are

investigated in-depth elsewhere (Tierney et al. 2012).

As we describe below, the MCEOF approach can be

generally applied to any collection of paleoclimatic

reconstructions that are time-uncertain. The technique is

intended to be modular and flexible enough to incorporate a

diverse set of proxy records, dating methods, and age

modelling approaches.

2 Data and methods

2.1 Proxy and chronological data

For our test analysis of regional changes in hydrology

during the past millennium in East Africa, we utilized

seven paleohydrological time series from the region

(Fig. 1) that (1) use a proxy interpreted to predominantly

reflect changes in hydroclimate, (2) contain data analyzed

at a mean time interval of 50 years or less, (3) contain at

least seven depth-age tie-points, (4) contain a least one data

point representative of modern ([1950 CE) conditions and

(5) have a reasonably well-constrained stratigraphy (i.e.,

minimal evidence of turbidites, reworking, large hiatuses in

sedimentation). Table 1 summarizes the literature refer-

ences, chronological controls, average time-resolution,
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proxy type and length associated of each time series. We

used the proxy data ‘‘as is,‘‘ i.e., as presented in the source

publication with a few exceptions: (1) if necessary, proxy

records were truncated at the core depth associated with the

last age control point within the last 2,000 years; (2) in the

case of Lake Masoko, two records of magnetic suscepti-

bility are available from the lake, from two different

cores—one that extends to approximately 1500 CE (Garcin

et al. 2007) and another that extends back to ca. 43,300

BCE (Garcin et al. 2006). To cover the entirety of the last

millennium, we used the longer record, but translated the
210Pb age control points from the depths in the shorter core

to equivalent depths in the longer core, taking advantage of

the fact that for their period of overlap, the two records of

magnetic susceptibility are highly and significantly corre-

lated (r = 0.90, p = 0.0002; Monte Carlo test; Ebisuzaki

1997); (3) the charcoal data from Lake Tanganyika were

log-transformed to account for the strongly skewed distri-

bution of these data.

Various methods were used by the authors of the African

paleohydrological data to provide chronological control,

including AMS 14C dating, unsupported 210Pb dating,

identification of known tephra layers and varve counting

(Table 1). Recognizing that each type of dating method has a

different kind of error distribution, we treat the different

classes of dating methods accordingly in our MCEOF pro-

cedure as described below. We assume that year-of-collec-

tion assignments and historical marker horizons have no

error associated with them, except if otherwise indicated in

the source publication. We assume that 210Pb dates, cross-

core correlations and tephra markers have error that can be

approximated by a Gaussian distribution and if not specified

in the source publication, the 1r error was assumed to be

5 years. Of the seven records, two utilize varve chronologies

(Lake Malawi and Lake Challa) and in that case uncertainty

is based on an estimate of potential errors in identifying and

counting the annual layers. The estimated uncertainty for the

Lake Malawi varve stratigraphy is ±0.5 annual varve cou-

plets (0.5 years) at each stratigraphic horizon (Johnson and

McCave 2008). The estimated uncertainty for the Lake

Challa varve stratigraphy is ±0.3 annual varve couplets

(C. Wolff, personal communication).

Uncertainty associated with 14C dating is more compli-

cated, as the translation of 14C years into calendar years is a

function of the 14C production rate in the atmosphere and

therefore varies in time. Furthermore, 14C dates on total
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Fig. 1 Map (left panel) and

time series (right panel) of East

Africa showing the location of

the published proxy records

utilized in our test of the

MCEOF method. See text and

Table 1 for details. Y-axis are

oriented such that wetter

conditions plot upwards
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organic carbon (TOC) in lakes often reflect a lake-specific

radiocarbon reservoir, which can be substantial (i.e.

500–1,000 years) in hardwater lakes or large lakes with a

permanently isolated hypolimnion. Of the seven lakes, two

(Victoria and Tanganyika) have radiocarbon reservoirs and

TOC 14C dates, thus requiring that the dates be corrected

prior to calibration to calendar years. In each of these

studies, the authors determine the lake 14C reservoir cor-

rection via use of paired terrestrial macrofossil and lake

TOC 14C dates or paired 210Pb and 14C dates from the same

stratigraphic horizon, but do not provide an estimate of error

associated with these reservoir corrections. Since we do not

have error information we assume for the purposes of this

study that any reservoir corrections made by the authors do

not have an error, although in principle known reservoir

errors could be compounded with the analytical 14C error

prior to calibration to calendar years.

To treat the 14C dates between the seven records consis-

tently, we re-calibrate the raw (or reservoir-corrected) 14C

ages provided in each source publication using the IntCal09

curve (Reimer et al. 2009) and CALIB 6.0 (Stuiver and Rei-

mer 1993), and we use the resulting calendar-age empirical

probability distributions during the age model iterations

described below. These distributions are often highly non-

Gaussian in shape, containing plateaus and multiple maxima.

In many cases, the authors of the individual limnological

studies omitted ‘‘reversed’’ 14C ages—dates whose mean

calibrated calendar year designation was older than the date

below it within the stratigraphic column and thus potentially

violates the principle of superposition. This is not an uncom-

mon feature of radiometric age modeling in depositional

environments, and often arises due to the reworking of older

sedimentary material or bioturbation. Here, we reincorporate

some of these as potential additional age controls, while still

omitting those reversed dates where the probability of ran-

domly drawing a set of dates between an ordered date and a

potentially reversed date in stratigraphic order is less than 5 %.

2.2 A Monte Carlo empirical orthogonal function

approach

We seek a reduced set of spatial and temporal variables

that isolate the dominant modes of regional paleoclimate

variability amongst a set of proxy records and that also

account for the time uncertainty inherent to each individual

record. Our procedure therefore involves iteration of two

integrated steps: First, we independently resample the

individual age models for each lacustrine proxy record

using their radiometric and other age controls and their

respective uncertainty, then we decompose each set of

resampled proxy records into their leading spatiotemporal

modes using empirical orthogonal function (EOF) analysis.

This procedure is repeated many thousands of times,

resulting in bootstrapped ensembles of possible proxy

records, EOF loadings, and EOF time series expansions

each defined by different age-depth models.

Table 1 A list of the paleoclimate proxy data used in our test of the MCEOF method, including lake site name, type of proxy, length of the

record, average time interval of the respective proxy data, types of chronological controls (dating type) and source publication(s)

Lake Proxy Oldest

record

Average

DT

Dating type Number

of dates

References

Challa Branched and Isoprenoidal

Index (BIT; run-off proxy)

22971 BCE 33 Varves (for last 2 ka), verified

with 210Pb and 14C

N/A Verschuren et al. (2009),

Wolff et al. (2011)

Naivasha Lake-level reconstruction

based on sediment

stratigraphy, fossil diatoms

and midge assemblages

CE 884 3 14C, 210Pb, YOC, historical

marker horizons including

Salvinia molesta outbreaks

and Daphnia eggs

20 Verschuren et al. (2000),

Verschuren (2001)

Victoria % Shallow water diatoms

(lake-level proxy)

1032 CE 5 14C and coretop age via cross-

core correlation

7 Stager et al. (2005)

Edward % Mg/Ca in authigenic calcite

(lake-level proxy)

552 CE 4 14C, coretop age via cross-core

correlation

21 Russell and Johnson

(2007)

Tanganyika Charcoal (aridity proxy) 690 CE 10 14C, 210Pb and coretop age via

cross-core correlation

12 Tierney et al. (2010)

Masoko Low-field magnetic

susceptibility (run-off

proxy)

BCE 43307 10 14C, cross-core correlation,

YOC, tephra

7 Gibert et al. (2002),

Garcin et al. (2006,

2007)

Malawi Terrigenous mass

accumulation rate (MAR;

run-off proxy)

1270 CE 6 Varves, verified with 210Pb and

tephra layers

N/A Johnson et al. (2001),

Brown and Johnson

(2005), Johnson and

McCave (2008)

YOC year of collection
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2.2.1 Iterative age-depth modeling

As described in Sect. 2.1 above, each proxy record is

mapped to calendar years using a set of age-depth rela-

tionships, each with its own uncertainty. There has been

considerable focus on developing methods for creating an

optimal age model for a single sediment core (e.g. Blaauw

et al. 2003; Telford et al. 2004a; Heegaard et al. 2005;

Blockley et al. 2007; Bronk Ramsey 2008; Goslar et al.

2009; Blaauw 2010; Blaauw and Christen 2011). Here we

take an alternative approach: instead of modeling a single

optimal age-depth relationship, we iteratively resample

from the probability distribution of possible dates in each

record and develop an ensemble of thousands of possible

proxy time series that are consistent with the age determi-

nations, their estimated uncertainty, and stratigraphic

position. In practical terms, for each age constraint in each

individual proxy record, for each iteration we independently

draw a possible date from the probability distribution of

possible ages, and use these to create a new age model. This

process is continued for each chronological constraints. Our

approach is similar in spirit to Bayesian iterative tech-

niques—which have been applied to age-modeling previ-

ously in a similar manner (e.g. Blaauw et al. 2007; Bronk

Ramsey 2008; Blaauw and Christen 2011)—but here we

make no prior assumptions about sedimentation rates. The

only assumption we make is that of superposition: that age

of sediments increases as one moves downcore. We enforce

this requirement moving down-section, following the

assumption that typically the researcher has tighter chro-

nological constraints near the top of the sediment core (such

as 210Pb dating and the date of collection) than farther down

in the sedimentary sequence. For each age model iteration,

we choose a date within the uncertainty bounds of the top-

most chronological constraint and then if necessary exclude

areas of the uncertainty envelope in the subsequent chro-

nological datapoint that would violate superposition. We

then fit an age model to the subsequent depth-age pairs

using a monotonic piecewise cubic hermite polynomial

function (Carlson and Fritsch 1985), which smooths over

abrupt changes in sedimentation rates at tiepoints but unlike

a spline function does not permit unrealistic overshoots of

the age model between tiepoints. In practice, linear inter-

polation yields quite similar results.

Some sediment proxy records have a unique set of chro-

nological considerations that may require a different approach

to age-depth modelling than the basic one described above.

For instance, Lakes Challa and Malawi have varve chronol-

ogies, and so we model their age uncertainty in a unique way:

we assume that counting estimates are equivalent to a 1-sigma

value of a Gaussian error distribution, and that the error in

varve counting is independent between respective strati-

graphic horizons. To iterate within this dating constraint, we

randomly sample an error value from a Gaussian distribution

with a mean of zero and standard deviation of the varve

counting error at each depth interval at which the proxy was

measured in the core, with the added constraint of superpo-

sition. This simulates the possibility of erroneously missing or

identifying a varve, and this error then accumulates or atten-

uates along the length of the core.

Some sedimentary time-uncertain sequences may con-

tain proxy measurements below the last chronological

control point. For example, the bottom of the Lake Victoria

record spans beyond the last radiometric date, and so in the

original source publication it is anchored by extending the

inferred sedimentation rate from the dated portion of the

top of the core (Stager et al. 2005). We mimic this pro-

cedure here by fitting a line to the upcore resampled ages at

each iteration and using the least squares regression

equation to establish a bottom date.

Finally, in some cases such a large depth unit was sam-

pled for the chronological measurement that is it appro-

priate to take into account errors in depth as well. This is the

case for the Lake Naivasha data, and so we also consider

additional uncertainty in the corresponding depth of the of

the material used for radiometric dates by resampling from

a Gaussian distribution reflecting the range of possible

values (Verschuren et al. 2000; Verschuren 2001).

2.2.2 Empirical orthogonal functions

Empirical orthogonal function (EOF) analysis decomposes

the common variance in a collection of individual time

series into a few leading, low order orthogonal ‘modes’ (for

an overview of EOF analysis see Preisendorfer and Mobley

1988; Jolliffe 2002; Navarra and Simoncini 2010). The

resulting time series and the associate spatial patterns, or

loadings, can be used to identify and analyze common or

robust spatiotemporal variability from a large set of proxy

records. Let us represent a time series of proxy paleocli-

mate data as vector of length n

xi ¼ ðxið1Þ; xið2Þ; . . .; xiðnÞÞ ð1Þ

For a collection of individual proxy paleoclimate times

series of length n from m sites, we can construct the

original data matrix X

X ¼

x1ð1Þ x1ð2Þ . . . x1ðnÞ
x2ð1Þ x2ð2Þ . . . x2ðnÞ

. . . . . . . .
.

. . .
xmð1Þ xmð2Þ . . . xmðnÞ

2
6664

3
7775 ð2Þ

In order to be able to perform the empirical orthogonal

decomposition of the data matrix, the different proxy series

are linearly interpolated to a common time step; in the case

of the East Africa analyses performed here, we interpolate
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to a time-step of 5 years. In practical terms, we have

constructed a matrix where each row reflects the data from

a different proxy site, and time changes are regular

intervals from column to column. Because the individual

proxy records each have their own dimension associated

with the measurement scale of the various analyses, for

comparison the time series can be made non-dimensional

(standardized) by removing the mean �x of each and setting

the standard deviation s to unity

zi ¼
xi � �x

s
ð3Þ

The correlation matrix R of the scaled data is then given

by

R ¼ 1

n� 1
ZZT ð4Þ

For paleoclimate applications, aligning each record such

that the direction of the time series anomalies indicates the

same qualitative interpretation of past climate conditions

(e.g. positive anomalies always indicate wet conditions

and negative anomalies, dry conditions) facilitates inter-

pretation. This may require changing the sign of some

records such that same signed anomalies have the same

climatic interpretation.

Empirical orthogonal function (EOF) analysis decom-

poses the correlation matrix of the proxy series into a set of

m orthogonal eigenvectors u and their corresponding

eigenvalues r

R ¼ URUT ð5Þ

We refer to the eigenvectors as ‘loadings’. Projecting

the normalized data matrix onto these yields an m by n set

of corresponding uncorrelated temporal scores, amplitudes,

or time series A:

A ¼ ZU ð6Þ

In practice, the singular value decomposition of the non-

dimensional data matrix Z yields the same results. Note that,

because the sign of the eigenvectors is arbitrary, it may be

necessary to examine the results of the decomposition in

order to ensure consistent physical interpretability across

iterations. The percent of the total variance from the

original proxy records associated with each new ith mode is

given by:

riPm
i¼1 ri

ð7Þ

2.3 Method application and evaluation

2.3.1 Significance testing

The eigenvalues, and by extension the variance explained

by each new variable, offer an opportunity to evaluate

which of the leading modes are likely to be meaningful or

separable from noise. Such criteria can be thought of as an

assessment of statistical significance with respect to the

same procedures when applied to an appropriate null

model. Kaiser (1960) suggested retaining only those modes

with eigenvalues from a correlation matrices greater than

unity. Cattell (1966) proposed using a scree plot to identify

where the slope of the ordered eigenvalues appears to

‘level off’, and North et al. (1982) provided a rule of thumb

based on identifying degenerate EOFs that are a function of

sampling noise. As an alternative, non-parametric

approach, Monte Carlo methods—which evaluate the data

eigenvalues against a white or red noise null model (Prei-

sendorfer and Mobley 1988)—provide a perhaps more

rigorous test for significance, although it should be noted

that even here what is being tested is not the physical

interpretability of any given mode, but rather whether they

are likely to differ from a reasonable null hypothesis.

We apply a test similar to Preisendorfer’s ‘Rule N’

(Preisendorfer and Mobley 1988) in order to evaluate how

the low order modes of climate variability in the regional

set of proxy data compare to those that can arise from

random noise time series. For our null hypothesis, we

created synthetic, random time series based on (1) Gauss-

ian white noise and (2) ‘red’ noise, with parameters derived

from autoregressive (AR) models fitted to the actual data

series (Schneider and Neumaier 2001). The order of the AR

models was determined by Schwarz’s Bayesian Criterion.

The set of random time series are then subjected to the

same EOF analysis described above and their eigenvalues

compared with those from the ensemble from the actual

data. We performed 1,000 red noise tests for each of the

10,000 ensemble members of the real data.

2.3.2 Orthogonal rotation

The methods described above produce a reduced set of

orthogonal modes that reflect patterns of common vari-

ability in space and time in the original proxy data. While

this approach is efficient for reducing the dataset, the

orthogonality constraint almost certainly places limits on

the interpretation of the modes in terms of their physical,

climatological associations (c.f. Richman 1986; Dommen-

get and Latif 2002; Dommenget 2007; Hannachi et al.

2007; Monahan et al. 2009). That is, climate variability for

a region is likely to be a composite of forced and unforced

variability that are possibly correlated in time and space,

each with their own magnitude and preferred time scales of

variability (Monahan et al. 2009). One approach com-

monly used to isolate more ‘local’ modes of variability in a

set of space-time records that allows relaxation of ortho-

gonality constraints is rotation of the eigenvectors such that

the new loadings cluster either near unity or near zero
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(Richman 1986; Mestas-Nuñez 2000), although rotation

also has its own possible drawbacks (c.f. Jolliffe 1987). We

test the utility of this approach here by applying Varimax

rotation to the two leading modes (Kaiser 1958; Richman

1986) from each iteration of the MCEOF procedure

described above, normalizing by the square root of the

respective eigenvalue (Jolliffe 1995). The result is a set of

rotated loadings and amplitude time series that are nonor-

thogonal and temporally correlated (Jolliffe 1995; Mestas-

Nuñez 2000).

2.3.3 Proxy and pseudoproxy application

For our analysis of the East African paleohydrological

proxies, we performed 10,000 iterations of the MCEOF

procedure described above and produced both rotated and

unrotated modes. Because the sign of the eigenvectors is

arbitrary, we set each iteration so the modes are consistent

across the ensemble. For the Rule N significance test

described above, we performed 1,000 red noise tests for

each of the 10,000 ensemble members of the real data.

10,000 iterations of the MCEOF analysis, written in

MATLAB and run on a recent generation (early 2009)

quad-core Mac Pro, require approximately 72 hours to

complete analysis of a dataset of 7 sites with 183 time

points. We also ran an experimental MCEOF procedure out

to 100,000 iterations in order to evaluate the number nee-

ded to achieve stable results.

In order to evaluate the skill of our technique, we also

developed a complementary ‘pseudoproxy’ evaluation

(Evans et al. 1998; Smerdon 2012) as a test of whether we

could recover a known and realistic ‘climate’ signal from a

set of simulated and time uncertain ‘proxy’ time series

designed to mimic the actual records. We used precipita-

tion and temperature output from the last millennium

forced simulation of the National Center for Atmospheric

Research (NCAR) CSM1.4 coupled ocean-atmosphere

model (Ammann et al. 2007) to develop a time series of

moisture balance anomalies (using the Palmer Drought

Severity Index (PDSI), Palmer 1965) at the model locations

corresponding to our actual proxy sites. We chose to cal-

culate PDSI because it is a reasonable approximation for

the climate signal encoded by the lake level proxies, which

are sensitive to moisture balance rather than strictly pre-

cipitation. These time series were then downsampled to the

resolution of the corresponding record and given the same

number and type of chronological tiepoints as the actual

proxy sites to mimic the time-uncertainty. We then ana-

lyzed the simulated records using the same procedure as

outlined above, and compared the extracted MCEOF

modes to the time-certain EOFs of the moisture balance

anomaly series. While we don’t necessarily expect nor

require that the climate model is a perfect representation of

the true climate system in the region in either time or space,

it does provide us with a testing environment with a known

and physically plausible spatiotemporal variability that

mimics the actual climate of the region (Smerdon 2012).

3 Results

3.1 East African proxies

A plot of the 68 and 90 % two-tailed confidence intervals

derived from the iterated age model ensemble members

for each actual East African proxy site provides a visual

assessment of the age uncertainty in each of seven proxy

records (Fig. 2). To a first approximation, the age error of

each respective record scales to the number of radiocarbon

dates, although as expected if the radiocarbon ages happen

to fall during a plateau in 14C production their efficacy as

a strong constraint is reduced. For example, the dating

constraints on the Lake Naivaisha lake level record during

the Little Ice Age contain relatively large calibration

errors ([100 calendar years, 2r) and thus allow the pluvial

period near 1700 CE to shift by as much as 200 years

(Fig. 2). We also plot the proxy data on their published

age models over the confidence intervals of the ensemble

iterations to compare the originally-constructed age-depth

relationships with our ensemble predictions (Fig. 2). In

most cases, the published age models fall within the 90 %

confidence intervals, although there are some exceptions.

For example, portions of the Lake Edward record fall

along or outside the edges of the 90 % confidence interval,

as does the punctuated drought in Lake Naivasha near

1250 CE.

The time series expansion of the two leading unrotated

EOFs of the MCEOF analysis are shown in Fig. 3, along

with their 90 % (two-tailed) confidence intervals. We only

extend these back to 1270 CE because loss of the Lake

Malawi record beyond that point creates a substantial

artifact in the covariance matrix, and therefore the time

series. The first EOF explains 30 ± 6 % of the total vari-

ance (median, 2-sigma range) and the second EOF explains

22 ± 4 % (median, 2-sigma range). For sites that load

positively upon EOF1, this component describes a trend

that features a slightly drier Medieval period (1270–1400

CE), a pluvial period during the early half of the Little Ice

Age (1400–1750 CE), drought during the mid-late 18th

century, and a recovery to more average conditions towards

the present day (Fig. 3). For sites that load positively on

EOF2, this component captures a trend that features a

slightly-wetter than average late Medieval Period

(1300–1500 CE) followed by progressive drying culmi-

nating in a drought near the time of the Maunder Minimum

(ca. 1700 CE) and then a rise toward wetter conditions
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towards the present day. As described in Sect. 2.2.2, we

evaluated the significance of these leading EOFs in a

number of ways: (1) by scree plot, (2) using the Kaiser

(1960) criterion, (3) by applying the Preisendorfer and

Mobley (1988) Rule N with a white noise null hypothesis

and (4) by applying Rule N with autoregressive noise

models conditioned on each proxy data time series.

Figure 4 displays the results of the Rule N tests. The first

two EOFs are significant at the 90 % level by comparison

to the white noise null (Fig. 4), as well as always having

eigenvalues greater than unity (Kaiser 1960). The first two

EOFs also exceed the mean AR null hypothesis (Fig. 4),

although the median eigenvalues do not consistently

exceed the 90 % confidence level. Based on the variety of

tests performed, we consider the first two EOFs as poten-

tially interpretable, while the third pattern and those

beyond appear unstable and degenerate (North et al. 1982)

and not consistently differentiable from noise.

A biplot shows the loadings of each lake site upon the first

two EOFs along with their 1-sigma range from the 10,000

member ensemble (Fig. 5). Lakes Victoria, Tanganyika,

Challa and Naivasha load positively on EOF1, whereas

Lakes Edward, Masoko and Malawi load negatively on

EOF1. Most lake sites load positively on EOF2, and none

load significantly negatively on this mode, although given its

uncertainty bounds Lake Naivasha’s weight on the second

mode is not readily distinct from zero (Fig. 5).

As described above, we also test a Varimax rotation (see

Sect. 2.2.2) of the two leading EOFs to investigate the

effects of rotation on the time evolution and spatial load-

ings of the leading modes. As expected, the rotation further

distinguishes the site groupings already apparent in the

unrotated components; namely, that Lakes Edward, Mas-

oko and Malawi load similarly and form one group,

whereas Lakes Tanganyika, Victoria, Naivasha and Challa

load similarly and form a second (Fig. 6). The rotation has

relatively little effect on the broad-scale temporal trends in

the primary EOFs, although the rotation reduces the

uncertainty range in the time series (Fig. 7).
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Our long, 100,000 iteration experiment indicates that,

for this particular set of proxies the mean width and vari-

ance of the EOF uncertainty bounds stabilize between

5,000 and 10,000 iterations (Fig. 8). We expect, however,

that different applications of this technique with different

sets of proxy data could require either more or fewer

iterations to achieve this stability.

3.2 Pseudoproxies

Applying the MCEOF methodology to our pseudoproxy

experiment reveals that the method readily recovers the

model-simulated leading mode of East African climate

variability (PEOF1), but doesn’t resolve many of the

temporal features in the second simulated PEOF (Fig. 9).

The pseudoproxy PEOF1 accounts for 35 ± 6 % of the

total variance (compared to 45 % for the time-certain first

EOF), while pseudoproxy PEOF2 accounts for 19 ± 5 %

(compared to 23 % for the time-certain second EOF).

PEOF1 successfully reproduces the time evolution of the

time-certain mode from the CSM1.4 climate model,

including a trend toward wetter conditions in the early part

of the record, sustained wet conditions between model

years 1500 and 1700 CE, and a decline toward dry con-

ditions between the model’s eighteenth century and the

present. PEOF1 also captures the timing of the major

decadal scale events. PEOF2 tracks the centennial-scale

patterns of the time-certain second EOF, but fails to

accurately capture decadal and multidecadal variability.

The uncertainty bounds for PEOF2 show that the decadal

pluvials or droughts can be substantially displaced in time,

for instance, in the fifteenth and turn of the nineteenth

century. Intriguingly, while we do not expect the model to

reproduce precisely the true time history of the climate of

East Africa, the CSM1.4 PEOF1 still possesses similar
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features to those identified in our proxy leading EOF,

namely a Little Ice Age pluvial. Comparisons of climate

model-simulated East African climate to actual proxy data

are beyond the scope of this paper and are discussed

elsewhere (Tierney et al. 2012).

4 Discussion

4.1 Paleoclimatic interpretability

The purpose of the MCEOF analysis is to reduce the space

of the regional proxy dataset in order to identify, and

provide an error estimate for, shared modes of variance

between multiple time-uncertain series, with the goal of

revealing coherent changes in climate within a given region

of interest. In this case, our pseudoproxy analyses confirm

that the first EOF is representative of the true (age-error

free) EOF. Based on both our evaluation of its potential

significance and comparison to the pseudoproxy tests,

EOF1 of the East African lacustrine proxy data likely has

an interpretable, climatically-driven signature. On the other

hand, our pseudoproxy results indicate that the second EOF

has a larger uncertainty particularly at decadal and multi-

decadal time scales and that it is likely more difficult to

successfully recover the true EOF given the age error of

our test sites. Our Rule N test on the actual proxy data,

however, suggests that the mode can be distinguished from

noise. We conclude that caution should be exercised in

interpreting higher-order modes within a climatic context.

The ability of the technique to recover higher-order modes

is also almost certainly related to the degree of time

uncertainty: here, relatively large time uncertainties appear

to have the effect of introducing instability into the second

EOF, but given a collection of sites with better constrained

chronologies lower order modes may be recoverable with

greater confidence.

In interpreting EOFs as potential climate signals, it is

important to keep in mind that the unrotated EOF analysis

constrains spatiotemporal modes to be orthogonal, whereas

the climate system itself is unlikely to be so. In this case,

the MCEOF analysis discriminates between paleoclimatic

records in the region that indicate pluvial conditions during

the Little Ice Age from those that record dry or drying

conditions, but this does not necessarily imply that aspects

of the EOF1 pattern or EOF2 pattern exclusively occur at

one or another site. However, we may still infer broad-

scale climatic meaning from the loadings to the extent that

they are consistent with the geography and climatology of

known aspects of regional climate. For example, we note

that in the unrotated analysis the sites that load most
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prominently on EOF1 and also have the smallest loadings

on EOF2 are the sites that are located farthest to the east of

our domain: Lakes Challa and Naivasha (Fig. 5). This may

be of climatic relevance because within East Africa,

hydroclimate in the easternmost sector of the region is the

most sensitive to Indo-Pacific dynamics, including El Niño,

which causes enhanced rainfall (Ropelewski and Halpert

1987; Janowiak 1988; Nicholson and Kim 1997; Camberlin

et al. 2001). It is also reasonable that Victoria and Tang-

anyika load closely to one another; the historical records of

lake level fluctuations in Tanganyika and Victoria are

remarkably alike (Stager et al. 2007), suggesting the two

regions experience similar hydroclimatic variability on the

multi-decadal scale. Further climatic interpretations of

EOF1 are discussed elsewhere (Tierney et al. 2012).

These results demonstrate that the MCEOF approach is

capable of advancing our understanding of paleoclimate in

a number of ways. For one, the MCEOF highlights the

robust features that are reliably shared between disparate

sites and diverse proxies and that are clearly differentiable

in spite of chronological and other sources of uncertainty.

In addition, the technique may succeed in objectively

separating out a primary climatic influence (i.e., that of the

Indo-Pacific) from other climatic forcings acting upon

different sites to a different degree.

Another useful paleoclimatic application of the MCEOF

approach is that the ensemble iterations can be used to

provide an empirical probabilistic estimate of the mean

timing—and the uncertainty—of notable paleoclimatic

events (droughts, pluvials, and transitional periods). For

example, many of the East African sites show evidence for

droughts during the latter portion of the Little Ice Age, and

MCEOF1 highlights persistently dry conditions in the mid-

late eighteenth century (Fig. 3). To assess the relative

timing of these droughts, we can plot the year corre-

sponding to the minimum value between 1650–1950 CE

for each individual proxy ensemble and the EOFs as a

histogram (Fig. 10). In addition to providing a visual

assessment of when drought occurs at each site and range

of uncertainty consistent with a possible set of age models,

the empirical density functions also provide a way to

estimate both the timing of droughts at each individual site

as well as the potential synchronicity between sites or in

relation to independently known climate forcings. For

example, in spite of the large age uncertainty of the Lake

Naivasha record, we can determine that there is a 91 %

chance that the major LIA drought at this lake occurred

after the end of the Maunder Minimum (1715 CE), in

agreement with the interpretation of Verschuren et al.

(2000) that a wet period prevailed during most of the

Maunder Minimum and was only subsequently followed by

a severe drought. Furthermore, given that the probability

distributions for the Maunder Minimum drought at Lakes

Masoko and Malawi are approximately normal, we can

apply a T test for contemporaneity following Long and

Rippeteau (1974) to determine that there is an 81 % like-

lihood that these droughts occurred at the same time or,

stated properly, that there is insufficient evidence to reject a

null hypothesis of simultaneity.

The Varimax rotation of the two leadings EOFs has the

effect of tightening the empirical probability distributions

for the droughts identified in EOF1 and EOF2 (Fig. 10).

The onset of late Little Ice Age dry conditions in REOF1

falls between 1750 CE and 1800 CE, as opposed to the more

widely distributed drought in the unrotated mode. Similarly,

the drought in REOF2 falls at 1690 CE ± 15 years (1r) as

opposed to 1710 CE ± 50 years (1r) in the unrotated mode.

To some extent the collapse of the drought distribution in

the rotated EOFs is a function of the mathematics of the

pairwise rotation itself: as noted above 3, it separates out

records that have a wet period during the LIA from those

that are dry or drying, and these records also happen to have

their LIA minima fall in the second half of the 18th century

and during the Maunder Minimum, respectively.

4.2 Methodological considerations and expansion

We have presented here a technique that addresses two

potential goals when interpreting paleoclimate dynamics

from time-uncertain proxy data—namely, isolating robust

coherence between records in the presence of age model

error and developing useful estimates of uncertainty. While

our approach is designed to be both flexible and transparent

in application, there are both advantages and disadvantages

associated with the methodology.
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As described in Sect. 2.2.1, we assume superposition

and resample in a manner that does not permit age rever-

sals, moving from the top of the core sequence to the

bottom. This approach is admittedly simplistic compared to

formal Bayesian analysis such as those used in the pro-

grams OxCal (Bronk Ramsey 1995, 2008) and BACON

(Blaauw and Christen 2011) but it is relatively straight-

forward to code, calculate, and conceptualize. When

uncertain radiometric dates are distributed sparsely down-

core our approach performs similarly to a full Bayesian

approach. Furthermore, comparison between proxy data

plotted on our iterated time uncertainty with proxy data

plotted with the published age models shows generally

good agreement (Fig. 2) suggesting that our empirical

method approximates the age modeling decisions made by

the respective authors and results in reasonable uncertainty

bounds. There are some exceptions (see Sect. 3), in which

the published models fall near or outside the 90 % confi-

dence levels. Such differences could partially reflect

decisions made in the original publication to choose a

calibrated calendar date within the 14C calibration distri-

bution that has a relatively low probability, or to use an age

model fitting function (linear regression, higher order

polynomial or flexible spline fit) which may unintention-

ally pass through an unlikely outer bound of the date dis-

tributions. Polynomial or spline functions are commonly

chosen to form age-depth models because of the assump-

tion that changes in sedimentation rates are generally

gradual and not instantaneous at the depth/age constraint,

as would be implicit in simple linear interpolation (Telford

et al. 2004a); however, if not properly constrained such fits

can introduce artificial maxima and minima or force the

model to pass through low-probability domains (or even

outside) of the depth-age constraints. Here, we use a

piecewise cubic hermite interpolating polynomial function

that performs similarly to linear interpolation in that it does

not allow ‘‘overshoots‘‘ of the age model in between age-

depth tiepoints, but unlike linear interpolation does not

force the model to produce instantaneous changes in sed-

imentation rate at each age-depth tiepoint. Our iterative

method also has a distinct advantage over single-curve age

modeling in that it makes use of the full probability dis-

tribution of each age-depth constraint rather than a point

estimate, which is a more robust way of treating the highly

non-Gaussian radiocarbon dates in particular (Telford et al.

2004b; Michczynski 2007). In addition, the use of the age

model ensemble mean or median will inherently smooth

over abrupt changes and thus provide an estimate for

average accumulation rates that is dependent on the

uncertainty of the dating constraints rather than the choice

of depth-to-age fitting function or sometimes difficult to

constrain prior assumptions about sedimentation rate.

On the other hand, the choice of imposing superposition

in the manner of our method has limitations: for sediment

cores that have been sampled at very fine intervals for

radiometric dating, or when a low precision date is closely

associated in depth with a high precision date, a random

draw from the older tail of the age distribution forces the

subsequent date toward the older limit of its own distri-

bution. The cumulative effect of this tendency can be that

iterations fall preferentially within the older ends of the

date uncertainty distributions. For age modeling of den-

sely-dated sequences, it may therefore be preferable to

employ a formally Bayesian approach (e.g., OxCal; Bronk

Ramsey 1995, 2008). In practice, results from OxCal or

other Bayesian approaches could be easily implemented

into our MCEOF framework; the posterior age distributions

generated within OxCal output could be simply input into

our iterative age-depth sequence. Indeed, the age-depth

modeling within our method is intentionally designed to be

‘‘modular’’ in the sense that the user may employ any kind

of method according to the needs of each time series’
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chronology. In our case, we employ three different

approaches to iterate age models for the East African data

(all with the constraint of superposition)—(1) A random

draw from the probability distribution of calibrated 14C

ages, (2) A random draw from a Gaussian distribution (for
210Pb dates or other tiepoints), and (3) an error methodol-

ogy tailored for varve counting error that treats counting

error as independent at each depth interval but cumulative

down-core (see Sect. 2.2.1).

A problem not unique to our application of empirical

orthogonal function analysis is the interpretability of the

spatiotemporal patterns with respect to meaningful physi-

cal modes of climate variability (Richman 1986; Dom-

menget and Latif 2002; Monahan et al. 2009). While

rotation of the EOFs does allow the orthogonality con-

straint to be relaxed (Mestas-Nuñez 2000), this is not a

panacea since this operation will itself identify local modes

even when broad-scale same-sign loadings might be

appropriate (Jolliffe 1987). For example, rotation clusters

the loading patterns in the East African data (Fig. 6) which

could distort regional-scale climatic meaning in these

patterns. Furthermore, the rotated East African EOFs

(Fig. 7) have a similar time-evolution as the unrotated

EOFs (Fig. 3), so the advantage of applying rotation to

further separate meaningful patterns of climatic evolution

is not obvious. However, applied to a larger set of proxies

or a different climate regime rotation could provide useful

for paleoclimate interpretation. Alternative reduced space

methods might be preferable in some situations; for

example, Distinct empirical orthogonal function analysis

(DEOF; Dommenget 2007), Simplified EOFs (Jolliffe et al.

2002), or Simplifying EOFs (Hannachi et al. 2006). Our

MCEOF procedure is intended to be flexible enough to

accept alternative decompositions appropriate to the data

and the climatic context.

Finally, it remains unclear how to use and interpret

conventional approaches to testing for the ‘significance’ of

the leading eigenmodes when the records are a priori

known to include a mixture of climate signal and noise.

Here we have compared the amount of variance explained

by these modes with that expected given a variety of null

hypotheses (Sect. 2.2.2). In particular, we take advantage

of our ensemble method to assess which modes have

explained variances that exceed that of high order autore-

gressive random series following the Preisendorfer and

Mobley (1988) Rule N approach. Yet we note that in the

actual paleoclimate data, the patterns of common variance

reflected in the eigenvalues represent the influence of real

hydroclimate variability, noise reflecting non-hydrocli-

matic influences on the proxy, and temporal bias arising

from the difference between age models and the ‘true’

depth-to-age relationship. Thus, the Rule N red noise

approach alone may not be a useful test of ‘significance’.

We also note that stratifying the individual ensemble

members according to differences from the null model

reveals that high common variance modes can occur for a

number of different age alignments (results not shown). We

interpret this to mean that rare age model alignments that

occur in a small portion of the ensemble can result in a

large amount of variance even though the likelihood of that

particular alignment is small. The partitioning of variance

when the signal is noisy, the signal is red, and the data

points relatively few probably provides only a weak con-

straint on which age model is most valid and which modes

are ‘significant’. Practically speaking, this means that

interpretation of the modes is not simply a statistical

exercise, but also a geological and climatological one.

5 Conclusions

We have described, tested, and applied a methodology for

developing a reduced set of time series and their associated

spatial patterns of large scale past climate variability with

estimates of their uncertainty using a combination of

Monte Carlo age model resampling and empirical orthog-

onal function analysis. This approach is flexible enough to

integrate a diverse set of techniques for resampling from

the space of possible age models, can include depth sam-

pling uncertainty, and may be applied across a dataset of

varying proxy type, sampling resolution, and age controls.

Our approach also yields ensemble time series for each

individual record, which themselves can be used in a

empirical probabilistic framework to make inferences

about the timing or concurrence of specific events detected

in the paleoclimate record. This method is intended to

complement existing, in many cases Bayesian (e.g. Bronk

Ramsey 1995), techniques for developing optimal age

models from imprecisely dated records.

When applied to a set of time-uncertain, decadal-reso-

lution lake sediment proxy records of past hydroclimate in

East Africa, our approach suggests that the first EOF is

‘‘recoverable‘‘ given the age uncertainty and is therefore

climatically interpretable. EOF1 describes overall wetter

conditions in the early Little Ice Age, a somewhat drier

Medieval Climate Anomaly, and sustained decadal-scale

drought conditions in the second half of the eighteenth

century. The loading pattern of this mode hints at an Indo-

Pacific influence, a known driver of climate in the East

African region. Generally speaking, our method provides

estimates of the common large-scale variability that can be

identified despite known uncertainties and provides a

framework for comparing both securely dated and time

uncertain paleoclimate evidence over a large region. Our

procedure to some extent formalizes the caution implicitly

shown by investigators of time-uncertain records in
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gauging which features of these records are reliable enough

to warrant climatic interpretation, and provides a manner

with which to identify features of records that are robust

given various sources of proxy and chronological

uncertainty.
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