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Abstract. In many large pelagic animals, observing behavior is limited to observation by
radio or satellite telemetry. In many cases, discriminating different behaviors from telemetry
data has been a key, but often elusive, goal. Here we use state–space models (SSMs) to fit a
correlated random walk (CRW) model that switches between two unobserved behavioral
states (nominally foraging and traveling) to 41 male and 43 female adult grey seal (Halichoerus
grypus) satellite telemetry tracks. The SSM results reveal markedly different spatial behavior
between the sexes, fitting well with sexual size dimorphism and known dietary differences,
suggesting that the sexes deal with seasonal prey availability and reproductive costs
differently. From these results we were also able to produce behaviorally informed habitat
use maps, showing a complex and dynamic network of small, intensely used foraging areas.
Our flexible SSM approach clearly demonstrates sex-related behavioral differences, fine scale
spatial and temporal foraging patterns, and a clearer picture of grey seal ecology and role in
the Scotian Shelf ecosystem.
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INTRODUCTION

Foraging is central to an animal’s life history and

ecology. Appropriately synchronizing foraging effort

with reproductive costs, seasonal cycles, and environ-

mental variability can mean the difference between

success or failure of individuals or whole populations.

For most pelagic animals, behaviors at sea are nearly

impossible to observe directly. Instead, biologists have

been attaching increasingly sophisticated electronic tags

that record or transmit location, physiological, and

environmental parameters. Satellite telemetry and other

forms of tracking have filled vast gaps in our knowledge

of ecology and natural history of many marine species

(e.g., Stewart et al. 1989, Jouventin and Weimerskirch

1990, McConnell et al. 1992, Prince et al. 1992, LeBoeuf

et al. 2000, Shaffer et al. 2006). The extent of ranging by

species such as northern elephant seals (Mirounga

angustirostris), Wandering Albatross (Diomedea exu-

lans), or Sooty Shearwaters (Puffinus griseus) was far

beyond expectation. Tagging studies today are growing

in number as tags become smaller and more reliable.

Thousands of animal tracks have been logged around

the world.

Methods for analyzing tracking data, however, have

not kept pace with the rapid improvement of tag

technology. There have been some advances, perhaps

the most significant is the idea of treating animal tracks

as correlated random walks (CRW; Kareiva and

Shigesada 1983, Marsh and Jones 1988, Turchin 1998,

Okubo and Gross 2002). The idea of using CRWs to

understand animal movement is quite old, but fitting

CRW models to data proved difficult (see Turchin 1998,

Okubo and Gross 2002).

Within the past 10 years, state–space models (SSMs)

have been increasingly employed to fit CRW models to

animal movement data (Anderson-Spreher and Ledolter

1991, Newman 1998, Sibert et al. 2003). The approach

differs from other methods because it simultaneously fits

two kinds of error: measurement error (how well the

location is known) and process noise (how much an

animal’s movement deviates from the model being fit).

Early SSM implementations used analytical or numer-

ical methods to fit models with known dynamical

parameters (e.g., equations of motion; Kalman 1960),

but non-Gaussian and/or nonlinear problems generally

need to be solved numerically using Markov Chain

Monte Carlo (MCMC) simulations or particle filters

(Gelfand and Smith 1990, Doucet et al. 2001).

In this analysis, we used a state–space approach to

analyze the movements of grey seals (Halichoerus

grypus) in the northwest Atlantic. Grey seals are

abundant upper-trophic-level predators inhabiting both

sides of the North Atlantic. There is increasing evidence

that marine mammals can have significant top-down

effects on ecosystem functioning (Bowen 1997). In

addition, there have been several attempts to model
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the impact of pinniped predation on commercially

important fish stocks (e.g., Overholtz et al. 1991, Punt

and Butterworth 1995, Mohn and Bowen 1996, Trzcin-

ski et al. 2006). A significant limitation of these models

is our lack of understanding of how foraging is

distributed in time and space.

Grey seals are sexually size dimorphic, and employ a

capital breeding strategy whereby both sexes use energy

stored months before reproduction to fuel the cost of

mate acquisition (males) or lactation (females). Differ-

ences in body size and breeding strategy between males

and females are reflected in significant differences in diet,

diving behavior, and blubber accumulation (Iverson et

al. 1993, Beck et al. 2003b, c, 2005, 2007, Lidgard et al.

2005). Although these differences have been clearly

demonstrated, it is not clear if they are life history

adaptations of each sex, niche separation due to size

difference, or some combination of these factors. Diet

differences are strongly seasonal (Beck et al. 2007), and

sexual segregation also has a strong seasonal component

(Breed et al. 2006). Differences are strongest in

midwinter just after the January breeding season when

males range much farther south and expand their diets

to include a broader range of prey than females. In

addition, two analyses demonstrate differences in space

use between males and females (Austin et al. 2004, Breed

et al 2006). However, these studies could not objectively

infer the behavioral of individuals at any particular time

or place.

To better understand movement and foraging behav-

ior, we fit a modified version of the Jonsen et al. (2005)

two-state behavioral switching model to 84 grey seal

tracks collected from Argos satellite tags deployed from

Sable Island, Nova Scotia, Canada. The parameters of

each state (foraging and traveling) depend upon the

animal’s behavior at any given time. This allowed us to

interpret fine scale behavioral information within the

tracks. We use the model to test our expectation that

foraging tactics in grey seals vary seasonally, either due

to life history patterns timed to reproductive effort or in

response to annual cycles of prey availability. We also

expected males, which have a wider dietary niche, to

forage more broadly than females and structure foraging

trips differently, particularly in winter consistent with

the diet results of Beck et al. (2007) and range

differences of Breed et al. (2006).

METHODS

Tag deployment and data collection

Grey seals were captured on Sable Island, Nova

Scotia, Canada, a sand island approximately 300 km

east of Halifax (448 N, 608 W), and currently the largest

grey seal breeding colony in the world (Bowen et al.

2007). Seals were captured during either January

(breeding season), May–June (molt), or September–

October from 1995 to 2005. After manual capture with

hand-held nets, seals were anesthetized and Argos

satellite transmitters (SDR, Wildlife Computers, Red-

man, Washington, USA; ST-18, Telonics, Mesa, Arizo-

na, USA; and SRDL 7000, Sea Mammal Research Unit,

St. Andrews, UK) were attached using 5-minute epoxy

(Austin et al. 2003). Some instruments were removed

when the animals returned to breed, while others were

left on until they failed or fell off. In total, we analyzed

satellite-location tracks from 84 adult grey seals (41 male

and 43 female). Of these, 21 were duty cycled

(programmed 1 or 2 days off between each day

transmitting).

State–space model

Argos satellite transmitters report locations at irreg-

ular time intervals and are often much less precise than

published estimates (Vincent et al. 2002, Jonsen et al.

2005). Error in location causes behavioral CRW models

to fit poorly and can lead to erroneous interpretation of

results, even after outliers have been removed with ad

hoc filtering methods (Jonsen et al. 2006). State–space

models accommodate this problem with separate equa-

tions for observation error and randomness in the

animal’s behavior. The observation equation relates

satellite observed locations to an animal’s true unob-

served location. This is linked with a stochastic

behavioral model, the transition equation, which pre-

dicts where the animal will move next.

We fit a two-state switching CRW model described in

Jonsen et al. (2005) to the grey seal data using

WinBUGS (available online)5 and R (R Development

Core Team 2008). WinBUGS enables Bayesian analysis

of statistical models using Markov Chain Monte Carlo

(MCMC) estimation methods, typically the Metropolis-

Hastings algorithm for our models. Because we use a

Bayesian approach, we specified priors for all unknown

parameters, using vague priors for most parameters (see

Appendix A: Table A1 for priors). An expanded

description of the model and its WinBUGS implemen-

tation may be found in Appendix A with associated

functional model code, instructions, and three sample

tracks from our grey seal data set.

Before fitting the model, we constructed an index that

related the error of the temporally irregular observations

to the regular time steps of the CRW model being fit.

The index was created using simple linear interpolation

to the regular time steps. This procedure does not

interpolate, smooth, or otherwise regularize the loca-

tions themselves (for full details see Jonsen et al. 2005

and Appendix A). After creating this index, we fit the

following CRW model:

dt ; cTdt�1 þ N2ð0;RÞ ð1Þ

where dt�1 is the distance between locations xt�1 and

xt�2, and dt is the distance between the locations xt and

5 hhttp://www.mrc-bsu.cam.ac.uk/ bugs/winbugs/contents.
shtmli
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xt�1; dt and dt�1 are two-element vectors representing

differences in latitude and in longitude between consec-

utive positions on the track x. Since time steps are

regular, these are directly related to an animal’s speed

and thus behavior. Motion is autocorrelated in both

direction and speed, where c is the correlation coefficient

ranging from 0 to 1.

T is a transition matrix that relates the turn angle to

the spherical latitude–longitude coordinates of the data

and location estimates:

TðhÞ ¼ cos h �sin h
sin h cos h

� �
ð2Þ

where h is the mean turn angle. T relates turn angle to

spherical coordinates in a manner similar to converting

between polar and Cartesian coordinates. This results in

c correlating both speed and turning angle together, and

c’s near 1 are always associated with h near 0. This

property greatly simplifies the construction of the model

and has a stabilizing effect when fitting the model.

N2 represents the randomness in the animal’s behavior

and is modeled with a bivariate Gaussian distribution

with mean 0 and covariance matrix:

R ¼ r2
lon qrlonrlat

qrlonrlat r2
lat

� �
ð3Þ

where r2
lon is the variance in longitude, r2

lat is the

variance in latitude, and q is the correlation coefficient.

The model switched between two behavioral states.

The opposing states were represented by two sets of the

parameters h and c. For each displacement, one set of

parameters fit better (deviate less as measured within the

Metropolis-Hastings algorithm) than the other depend-

ing upon the movement of the animal. The set that fits

better at move t was the animal’s estimated behavioral

state at time t. An additional parameter, a, was

estimated to track the probability of switching from

one behavioral state to the other (transition probability).

Correlation lag was one time step, and time steps were

480 minutes.

At the outset of a model run, c and h were split into

two groups with nearly identical priors (Appendix A).

During model runs, displacements similar to each other

naturally aggregated, because individual displacements

deviated less from the mean of similar displacements

than from the mean of displacements differing greatly.

In practice, the resulting parameter estimates of each

group of c and h were similar across all tracks. One

group of parameters tracked migratory-type motion,

with displacements forming more or less straight lines

aggregating into a group with parameters of h near 08

and estimates of c between 0.5 and 1 (henceforth

referred to the ‘‘traveling’’ state). More stationary

behaviors, such as foraging, produce estimates of h ;

1808 and c’s between 0 and 0.6 (henceforth referred to as

‘‘foraging’’). For the remainder of the paper parameters

for the foraging state will be subscripted ‘‘for’’ whereas

parameters for the traveling state subscripted ‘‘trv’’ (e.g.,

cfor vs. ctrv).
To fit the model, two MCMC chains were run for

10 000 iterations, with a burn-in of 7000, sampling all

model parameters and each regularized location esti-

mate (which are estimated like parameters). Every fifth

point of the 3000 remaining samples was retained for a

net of 600 MCMC samples in each chain. From these

600 samples, a mean and variance for each location

estimate and model parameter was calculated.

Due to the large size of the data set, computational

limitations prevented us from fitting a single hierarchal

model as in Jonsen et al. (2006). A hierarchal model

would have allowed us to estimate individual parameters

for each track as well as population average parameters.

In addition, shorter tracks occasionally did not contain

enough data to confidently categorize behavior. These

tracks, however, could be categorized when combined

with other tracks in a single analysis. To use all the data

and to provide a limited cross validation, we divided the

84 tracks into 10 independent sets, each containing eight

or nine tracks. Groups contained one sex, but satellite

tag types were distributed so that each contained three

to five of the tag types deployed. Each set was then fit

separately.

For this analysis, we were more interested in

estimating states for all the data, rather than parameters

for individuals. Therefore, for each group of tracks, the

model parameters R, a1, a2, hfor, htrv, cfor, and ctrv were
estimated for the entire group of eight or nine animals

and not for individuals of that group. Only the tag-

scaling parameter s, which uniformly inflated or deflated

the precision of each location class to account for

variation in tag quality, was estimated individually.

Grouping tracks tended to elevate estimates of autocor-

relation in the foraging state (cfor, see Appendix A), but

had little effect on location or behavioral state estimates.

Since behavioral state was modeled as a binary

distribution, each MCMC sample was either fit as the

foraging state or travel state, with no middle range.

Averaging the binary MCMC samples for inferred

behavioral state effectively produced a proportion of

MCMC samples fit to the travel state. When this

proportion was very low or very high, confidence that

the inferred behavioral state was correctly categorized

was high. A small number of locations, typically near

switches, had proportions that were neither high nor

low. Such locations were considered uncertain in their

behavioral categorization. Fewer than 10% of locations

were uncertain (with proportions between 0.3 and 0.7);

these locations were excluded from analyses that

compared the characteristics of each behavioral state.

No objective general validation methods are available

for our SSMs (Jonsen et al. 2006). Thus we opted to

assess the results of our model by comparing them

against independent data. We used bathymetry data for
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this purpose, and formulated a series of mixed-effects

models to compare bathymetry data (Sandwell and

Smith 1992; 3-km spatial resolution) with location

estimates and predict whether water depth affected

behavioral state.

Testing behavioral hypotheses

We used mixed-effects models to investigate the

relationship between SSM estimated behavioral state

and a wide range of environmental and demographic

covariates.

After state–space modeling, we stratified the resulting

state estimates of location and behavior by sex and,

based on the results of Breed et al. (2006), into three

seasons (winter, January–April; summer, June–August;

fall, September–December). We used these categories to

construct a series of mixed-effects models to investigate

demographic, environmental, and seasonal parameters

affecting behavior.

Our first series of mixed-effects models assessed

relationships between the response variable of SSM

inferred behavioral state and depth, sex, and season

(fixed effects) and included seal identity as a random

effect. Since inferred behavioral state ranged from 0 to 1,

we initially fit the data directly to the 0–1 range using a

beta distribution and logit link. However, the beta

model was difficult to fit so we logit transformed

behavioral state and fit the same model assuming a

normal distribution.

The model assumed an AR(1) autocorrelation struc-

ture. The full model, including all main effects and two-

way interaction terms was as follows:

ln
statet

1� statet

� �
; b0 þ b1Gþ b2st þ b3dt þ b4G 0st

þ b5G 0dt þ b6s 0dt

þ / ln
statet�1

1� statet�1

� �
þ mseal ð4Þ

where statet is SSM-inferred behavioral state at time t, G

the demographic group (males or females), st the season

at time t, dt the water depth at time t, / is the AR(1)

autocorrelation coefficient, mseal the random effect of the

ith seal, the prime symbol ‘‘0’’ indicates interaction

terms, and b’s are the model estimated explanatory

coefficients for each fixed effect. Before logit transform-

ing SSM behavioral state, we added 0.001 to behavioral

state values of 0, and subtracted that amount from

values of 1. Locations within 5 km of shoreline were

excluded from the analysis in order to exclude haulout

and locations in shallow inshore water. We used AIC

scores to select the best model from all possible

combinations of main effects and interaction terms.

We had independent TDR data for 14 tracks, all from

September–October 2001. We fit a linear mixed-effects

model of the same form as Eq. 4 with logit transformed

behavioral state as the response variable to investigate

the relationship between dive parameters and behavioral

state. We assigned dives to the temporally closest SSM

FIG. 1. Typical grey seal (Halichoerus grypus) foraging trip showing outbound travel segment, foraging patch, and inbound
travel segment. Segments were discriminated using behavioral state estimates from the state–space model (SSM). Gray diamonds
are traveling locations, black diamonds are foraging, and open diamonds are uncertain. In this case, the trip began and ended on
Sable Island, Nova Scotia, Canada. Haulout locations are not plotted as they are not included as part of the trip. The dotted
polygon shows the minimum convex polygon of the foraging patch from which patch areas were calculated.
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location (always within 4 hours; totaling between 1 and

50 dives), and assigned the behavioral state at the

nearest SSM location to each dive. We then used

maximum depth, mean dive depth, dive duration, dive

shape, and bottom time as explanatory variables. We

did not use interaction terms because the dive param-

eters were not independent. Seal id was included as the

random effect. Locations with no dives within 4 hours or

within 5 km of shore were excluded.

Trip analysis

After locations and behavioral state were estimated

with the SSM, we divided trips into segments based on

behavior. Trips were identified as at least 1 day more

than 5 km from any shoreline. Each trip was then

divided into segments containing foraging locations and

traveling locations. We defined any area of at least three

consecutive foraging locations as a foraging patch, and

FIG. 2. Example SSM fits for (a) male and (b) female grey seal tracks. Foraging locations are black circles, and travel locations
are open white circles; the light gray line indicates the raw Argos track. Solid white points indicate locations of uncertain behavioral
classification (with Markov chain Monte Carlo [MCMC] traveling : foraging proportions from 0.3 to 0.7). Since grey seals are shelf
animals, only depths shallower than 500 m (black) are contoured. The black line is the 100-m contour; Sable Island (448 N, 608 W)
is highlighted in white.
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then measured the area of foraging patches using a

minimum convex polygon method. Most trips contained

a clear outbound segment, one foraging patch, and an

inbound segment (Fig. 1). However, about one-third of

trips were more complex, containing multiple foraging

areas or no foraging locations at all. In addition, some

trips contained no travel locations as animals began

foraging immediately after entering the sea.

Once trips and trip segments were identified, we

measured a range of trip properties, and examined how

they differ through the year and between sexes. We

chose seven properties: proportion of trips with no

foraging locations, proportion of trips with no traveling

locations, proportion of locations inferred as foraging

for each trip, trip length, area of the first foraging patch,

distance to first foraging patch from haulout, and patch

residence at the first foraging patch. Trip attributes were

transformed before model fitting; proportions were

logit-transformed and distances and areas were log-

transformed. After transformation, trip properties were

modeled as the response variable in the following mixed-

effects model to compare how these properties varied

between the sexes and among seasons:

tript ; b0 þ b1Gþ b2sþ b3G 0sþ / lnðtript�1Þ þ mseal

ð5Þ

where ‘‘trip’’ is one of the transformed trip properties, G

is sex, s the season, / the autocorrelation to the previous

trip, and mseal is the random effect of individual. All

mixed-effects analyses were conducted using the

‘‘mixed’’ procedure in SAS (Version 9.1.3; SAS Institute

2008).

RESULTS

Model performance

The model detected two behavioral states in all tracks.

Inspections of posterior distributions, autocorrelation

plots, and MCMC traces indicated MCMC runs

converged and model fits were consistent across the

data set (see Appendix A for diagnostic results).

Foraging moves were slow (averaging 0.4–1.3 km/h),

often reversals of previous moves, while travel moves

were faster (averaging 2.3–3.1 km/h) and almost always

added to the previous move to continue in the same

direction. Differences between the two behavioral states

were highly significant (P , 10�16 for most individuals;

see Appendix A: Tables A2 and A3 and Figs. A2, A5,

and A6). Results from two representative tracks are

shown in Fig. 2.

Spatial behavior and bathymetry

A striking pattern of foraging locations over shallow

banks is apparent. By contrast, most locations over deep

canyons were inferred as travel (Figs. 3 and 4). Mixed-

effects model results indicate depth was a predictor of

SSM behavioral state, although sex and season also

strongly predicted behavioral state (Table 1).

FIG. 3. Inferred foraging locations for all females grouped by
season (a–c, black points); 18 individuals are represented in panel
(a), 12 in panel (b), and 34 in panel (c). In panel (d), all modeled
locations for the 43 tracked females are plotted for the entire
year, with inferred travel shown as gray points and uncertain
locations as open diamonds. The 100-m and 400-m isobaths are
drawn, and Sable Island (448 N, 608 W) is shown as a light gray
crescent. A color version is available in Appendix B: Fig. B4.
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Mixed-effects results associated shallower water with

a higher likelihood of being in the foraging state;

foraging locations occurred in water that averaged 20–

30 m shallower than traveling locations in females, 5–15

m shallower in males. Seasonal and sex effects were also

strong, with males tending to forage in deeper areas than

females (averaging 5–10 m deeper, depending upon

season), and both sexes foraged in deeper water in

winter and shallower water in summer (Figs. 5 and 6).

Taking maps and mixed-effects results together, spatial

behavior was strongly influenced by bathymetry and

foraging effort focused in shallower areas of the shelf.

This general pattern, however, is dynamic and differs

markedly between the sexes and through the year.

Effect of sex and season on foraging behavior

The distribution of foraging locations suggests at-sea

spatial behavior might differ between sexes and among

seasons (Figs. 3 and 4). As noted, mixed-effects models

indicate sex and season and sex 3 season strongly

influenced the probability of being in the foraging state

(P , 0.0001 for all three effects; Table 1, Fig. 5). Males

were less likely to be in the foraging state than females,

but the degree to which this was true varied with season.

In winter, both sexes were less likely to be in the foraging

state than other times of the year.

Many aspects of trip structure differed between the

sexes and through the year (Table 2). Sex significantly

affected the ratio of foraging locations : total locations

in a given trip, as well as patch distance and patch area.

Female trips contained more foraging locations (mean

15–30% more) and females foraged at closer (mean 30–

80 km closer), smaller patches (mean 60–100 km2

smaller) than males. Season significantly affected trip

length, patch area, and patch residence; both sexes made

longer trips and spent more time foraging on larger

patches in the fall compared to other seasons (but see

Table 2 for specific details). There were no significant

sex-by-season interactions in trip characteristics.

FIG. 3. CONTINUED.
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Spatial behavior and diving

Although we expected to find a relationship between

diving and SSM inferred behavioral state, mixed-effects
models indicated that no dive shape parameters
significantly predicted SSM behavioral state. Plots of

TDR data vs. bathymetry and SSM behavioral state
indicate travel segments between foraging and haulout

sites align well with breaks in the dive data (see
Appendix B: Figs. B1, B2, and B3), but dive shape or

type was not informative for predicting spatial behavior.
We note, however, that our TDR data may not be

representative of dive data generally because they were
collected in early fall when most animals remain close to

shore, make very shallow dives, and rarely make longer
translocations that would be inferred as traveling.

DISCUSSION

The state–space approach for modeling movement
from satellite telemetry data has revealed a number of

important aspects of the biology, habitat preference and
behavior of this marine species. Without the ability to

simultaneously account for observation error and
process noise inherent in the complex and error prone
Argos data, we could not have fit a behavioral switching

model and so clearly demonstrated the heterogeneous
and seasonal nature of favored foraging areas, differ-

ences between male and female foraging behavior, or
change in depth of preferred habitat over the course of

the year.

Habitat use and behavior

Our large sample of long tracks (2–11 months each)

allowed us to draw population-level inferences about
behavior and habitat use. To interpret our results

biologically, we assume animals that remain in any
small area for extended periods are likely in favorable

habitat. This assumption is a central tenant of optimal
foraging theory (Stephens and Krebs 1986, Zollner and

Lima 1999) and has been observed in the behavior of
numerous species (e.g., Lima 1983, Munger 1984,

Alonso et al. 1995), including large mammals similar
to grey seals (e.g., Senft et al. 1987, Mori and Boyd
2004). Applying that assumption to inferred foraging

locations, our results indicate favorable habitat was
heterogeneously distributed, and comprised a patch-

work of intensely used areas separated by large gaps of
unfavorable, often deeper, habitat. These results also

indicate that the edges of favorable areas, such as
Middle Bank, can be sharp. By contrast, the most widely

used methods for analyzing telemetry data use some
form of kernel density estimator (e.g., Worton 1989).

Kernel density methods treat all telemetry points equally
and cannot use behavior as information about habitat

suitability (though some can use habitat data to adjust
kernel shape, e.g., Matthiopoulos 2003). In addition

kernel densities tend to smear the data by placing a
bivariate normal or other probability distribution over

each location, distorting any sharp edges into gentle

FIG. 4. Male foraging locations; 16 individuals are repre-
sented in panel (a), 11 in panel (b), and 30 in panel (c). In panel
(d), all modeled locations for the 41 males are plotted for the
entire year. See the Fig. 3 legend for an explanation of shading
in the figure. A color version is available in Appendix B:
Fig. B5.
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gradients, regardless of whether those edges are real or

an artifact of the data.

In grey seals, the seasonal change of inferred foraging

locations is striking. Winter foraging trips were longer

and required more travel time to more distant foraging

locations. Winter foraging locations were more scattered

and depth of foraging locations deeper than other

seasons. Deeper dives require more ascent and descent

time, leaving less stored body oxygen for bottom

foraging than shallower dives, and are thus less efficient

(Houston and Carbone 1992, Mori 1999, Thompson

and Fedak 2001). Diving animals should go only as deep

as they need to successfully forage. Being benthic

foragers, moving to deeper habitat during winter

suggests shallower more accessible areas used is summer

and fall are less favorable in winter. This, and the

scattered nature of foraging locations during winter,

suggests prey are less predictable, occur in deeper water,

and require more effort to acquire than in summer or

fall. In the western Atlantic, many fish species migrate to

deeper water during the winter and to shallow banks

during the summer and fall to remain in warmer water

(Perry and Smith 1994, Swain et al. 1998), and it is likely

predators, including seals, track this migration.

In summer and fall, foraging locations occur in more

focused patterns, especially over Middle Bank. From

May through August, both sexes, but especially females,

remain inshore near haulout sites, and spend a larger

proportion of their time ashore. Foraging trips are much

shorter, and many trips require little or no travel to

reach foraging areas. Despite the reduction in foraging

effort, both sexes gain body mass (Beck et al. 2003a),

suggesting prey may be more accessible during this

period. Finally, the intense use of Middle Bank and

FIG. 4. CONTINUED.
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surrounding areas while other equally accessible areas

are left practically unexploited suggests a highly
predictable prey resource over this bank in the fall.

Fatty acid analysis show that females heavily rely on

Atlantic sandlance (Ammodytes dubius) during this
period. Given the suitability of Middle Bank for

sandlance (Frank 1996, Beck et al. 2007), it is likely in
abundant, predictable supply, and has been for some

time, since our telemetry data spans 10 years and

females exploited the bank through the period.
Males had significantly fewer inferred foraging

locations and traveled more than females. This was
especially true in winter, and given the much lower rates

of inferred foraging and more numerous travel-only

trips by males in winter, males probably found this
season difficult. Prey aggregations were probably less

predictable, required more searching or longer migra-
tion to more favorable habitat near the southwestern tip

of the Scotian Shelf and on Georges Bank. Both sexes
foraged in deeper water during winter, suggesting prey

were generally deeper, but this change affected males

more than females.
Sexual differences in foraging were likely due to size

dimorphism. Male grey seals are about 50% heavier than
females and must consume more food to maintain and

gain mass. Males, but not females, have a negative body

energy balance over the winter (Beck et al. 2003a).
Earlier work suggested that winter negative energy

balance was the result of evolved life history, and that
males delay blubber accumulation to avoid negative

fitness consequences of long term blubber storage, while

females immediately store blubber to support pregnancy
(Beck et al. 2003a, b, c). Life history may play a role, but

our behavioral analysis suggests that the winter foraging
environment is harsh and larger animals have a harder

time meeting their energy needs than smaller ones.

Although females focus foraging effort to a greater
degree than males, a few small shelf areas receive a

disproportionate amount of foraging effort regardless of
sex. Given the large grey seal population in eastern

North America, we might expect to find ecosystem
effects in high use areas. Unfortunately, few fish

community surveys are conducted in the fall when

foraging activity by grey seals appears to be most

focused. With that lack of data, it is difficult to suggest

which species would be affected and by how much. Our

overall impression is that spatial behavior changes with

annual cycles of prey abundance. To help explain

changes in movement of grey seals, future work should

examine how prey distributions change seasonally.

TABLE 1. Mixed-effects model results showing the effect of sex, season, and water depth on state–space models (SSM) inferred
behavioral state of grey seals (Halichoerus grypus).

Model AIC sn sx dpth sn 3 sx sn 3 dpth sx 3 dpth

sn þ sx þ dpth þ sn 3 sx 120 363.3 **** **** *** *
sn þ sx þ dpth þ sn 3 sx þ sx 3 dpth 120 375.5 **** **** *** * ns
sn þ sx þ dpth þ sn 3 sx þ sn 3 dpth 120 378.7 **** **** *** * *
sn þ sx þ dpth 120 384.7 **** **** ***
sn þ sx þ dpth þ sn 3 sx þ sn 3 dpth þ sx 3 dpth 120 388.4 **** **** *** * * ns
sn þ sx þ dpth þ sx 3 dpth 120 396.7 **** **** *** ns

Notes: All possible models were tested; the six best are shown here. Effects are abbreviated as follows: sn, season; sx, sex; dpth,
depth. Columns to the right of the AIC show the type III P value of each term of the model. The model in boldface type is the best
fitting using AIC, and tables of pairwise comparisons from this model for the effect of each season and sex are available in
Appendix B: Tables B1 and B2.
* P , 0.05; *** P , 0.001; **** P , 0.0001; ns, P . 0.05.

FIG. 5. Fraction of SSM locations inferred as foraging.
Stars indicate the median proportion of locations inferred as
foraging for each individual for the respective sex and season;
the boxes show interquartile range; and whiskers the 10th and
90th percentiles. Horizontal lines in the boxes represent the
mean. Locations with uncertain behavioral classification or
within 5 km of shore were not included. The mixed-effects
model results shown in Tables 1 and 2 indicate that sex and
season strongly influence behavioral state. Abbreviations: F,
female; M, male.
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Model efficacy and conclusions

Animals draw upon a continuum of behaviors with

differences too subtle to resolve with Argos data and the

current approach. However, even with only two

behavioral states, this model yielded new insights. The

ability to fit more than two states is as much a limitation

of the data as it is the SSM approach. Another state,

haulout, should easily be discriminated from foraging

using a state–space switching model. It is not, however,

because the signal-to-noise ratio is too high in Argos

data to separate the perfectly stationary haulout

behavior from near stationary foraging behavior. GPS

tags with the resolution to observe such subtle differ-

ences are becoming increasingly available, and SSMs

will be able to objectively discriminate finer scale

behaviors from such data.

FIG. 6. Depth of the water column from bathymetry data at SSM modeled points inferred as foraging (gray bars) or travel
(white bars). The sample was further grouped by sex and season to show differences in depth at foraging and travel locations as well
as depth changes through the year. Stars indicate the median depth used by each individual for each behavioral state; the boxes
show interquartile range; horizontal lines in boxes are means; and whiskers the 10th and 90th percentiles.

TABLE 2. Grey seal foraging trip characteristics by season and sex and the strength of sex and season effects on each characteristic
according to the mixed-effects model described in Eq. 5.

Trip character

Winter Summer Fall Model effect

Male Female Male Female Male Female sx sn sx 3 sn

No. trips
(individuals)

50 (16) 49 (15) 70 (14) 40 (13) 131 (32) 133 (30)

Trips with
patches (%)

68 98 81 85 82 91

Trips without
travel (%)

14 10 11 18 9 28

Trip length (d) 10.5 6 8.5 7.1 6 5.7 9.4 6 7.7 5.4 6 11.6 12.7 6 11.9 10.5 6 11.4 0.083 0.003 0.306
Forging ratio� 0.33 6 0.28 0.61 6 0.22 0.48 6 0.29 0.62 6 0.28 0.49 6 0.31 0.67 6 0.29 ,0.0001 0.071 0.819
Patch area (km2) 259 6 324 201 6 285 315 6 530 200 6 246 385 6 720 307 6 488 0.003 0.006 0.734
Patch distance (km) 180 6 209 82 6 65 69 6 50 62 6 56 81 6 54 49 6 45 ,0.0001 0.181 0.599
Patch residence (d) 3.26 6 2.82 5.36 6 4.49 4.63 6 5.03 4.92 6 5.38 5.49 6 5.83 6.74 6 7.32 0.690 0.003 0.410

Note: For the last five characteristics, values are mean 6 SD. See Table 1 for key to model effects.
� Foraging ratio is the portion of foraging trip spent in the foraging state.
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SSM methods hold great promise for analyzing and

understanding animal telemetry data. Earlier analyses of

this dataset produced an impression of a species that

foraged broadly on the shelf (Austin et al. 2004, Breed et

al. 2006). In contrast, the current analysis suggests grey

seals focus foraging efforts on a tiny fraction of the total

shelf area. While grey seals may be found across the

entire shelf, many deeper areas are not suitable habitat

and animals travel through them on their way to

predictable and productive foraging patches. These

results have implications for understanding the effects

of grey seal predation on fish populations and potential

conflict with fisheries, currently an important ecological

and political issue.

With nearly 40 years of sustained population growth

at over 12% annually, Northwest Atlantic grey seals can

hardly be regarded as a conservation concern (Bowen et

al. 2007). However, for many marine species at risk,

satellite telemetry has been a primary method of

observation (e.g., James et al. 2005a, b). Using this or

similar state–space approaches to study such species

could greatly improve our understanding of their

ecology and aid conservation and management efforts

worldwide.
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APPENDIX A

Details and diagnostics of WinBUGS Markov chain Monte Carlo model fitting procedure (Ecological Archives E090-228-A1).

APPENDIX B

Additional tables and figures: detailed mixed-effects models results, plots of TDR data vs. SSM results, and color versions of
Figs. 3 and 4 (Ecological Archives E090-228-A2).

SUPPLEMENT

A compressed package of scripts, functions, sample data, and instructions required to implement the state–space model
described in the text (Ecological Archives E090-228-S1).
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