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In a recent paper, Dormann et al. (2007) (hereafter
Dormann et al.) conducted a review of approaches to
account for spatial autocorrelation in species distribution
models. As the review was the first of its kind in the
ecological literature it has the potential to be an important
and influential source of information guiding research.
Although many spatial autocovariance approaches may
seem redundant in the spatial processes they reflect,
seemingly subtle differences in approach can have major
implications for the resulting description of the data and
conclusions drawn. Though Dormann et al.’s review of the
available approaches was a step in the right direction, we
think that their simulation study ignored important con-
cepts which leads us to question some of their conclusions.

One of Dormann et al.’s primary conclusions was that
parameter estimates for most spatial modeling techniques
were not strongly biased except in the case of autocovariate
models. In the autocovariate model, as implemented by
Dormann et al., the parameter representing the effect of
environmental variables on species distributions (the coeffi-
cient for rain) was consistently underestimated. For this
reason Dormann et al. cautioned the use of autocovariate
approaches. This caution reiterated findings from a similar
simulation in which (Dormann 2007) argued that auto-
covariate logistic regression models used for binomially
distributed data (autologistic models) would be biased and
unreliable. These results appear to be in direct contrast to
earlier evaluations of this method (Augustin et al. 1996,
Hoeting et al. 2000, He et al. 2003) and need to be
considered seriously, as autocovariate approaches are now
widely used in ecology (Piorecky and Prescott 2006, Wintle
and Bardos 2006, McPherson and Jetz 2007, van Teeffelen
and Ovaskainen 2007, Miller et al. 2007); for instance the
seminal paper on autologistic regression (Augustin et al.
1996) has now been cited 222 times (Web of Science
accessed 8 September 2008). Simplified implementation

and interpretation of these models may result in misleading
conclusions.

Our critique is on three grounds. First, we show that the
change Dormann et al. observed in the parameter estimate
between the autocovariate approach and the true value is
due to multicollinearity between environment and space.
Variation shared among parameters is a common occur-
rence in ecological models and can rarely be avoided
(Graham 2003); however, it can be directly measured using
hierarchical partitioning approaches (Chevan and Suther-
land 1991). Second, there are situations in which auto-
covariate approaches offer the opportunity to incorporate
effects of behavioural and population processes into
ecological models. This may result in greater understanding
of these processes even though interpretation of the
estimated coefficients themselves may not be possible.
Third, we highlight that statistical regression models are
developed for different objectives than outlined by Dorman
et al. In particular, the goal of predicting future or non-
sampled observations invites a very different model-build-
ing strategy than the goal of interpretation of model
coefficients (Hastie and Tibshirani 1990). Because of this,
we argue that comparison of models with different
objectives should not be limited to an evaluation of only
bias. We show that the autocovariate approach can be a
useful model if minimizing prediction error is the objective.
For brevity, in this paper we focus on autologistic regression
for Bernoulli distributed data however, we believe our
arguments are applicable to autocovariate methods used
with Poisson and normally distributed data.

Multicollinearity of space and environment

Dormann et al. generated artificial distribution data in
which a hypothetical species was positively influenced by
rainfall. The authors also simulated spatially correlated

Ecography 32: 374�378, 2009

doi: 10.1111/j.1600-0587.2008.05562.x

# 2009 The Authors. Journal compilation # 2009 Ecography

374



errors. The realization of this data generation process was a
species distributed as a function of only rainfall and space;
this simulation could be thought of as reflecting the realistic
scenario that a species is influenced by both the environ-
ment and some sort of aggregative process (e.g. dispersal
limitation, conspecific attraction; see below). Examination
of a map of Dorman et al.’s simulated data clearly reveals a
species that is clustered in space (Fig. 1). However, because
rainfall itself is positively spatially autocorrelated (Fig. 2),
there is overlap in the effects of environmental and
aggregative processes on species clustering.

Autocovariate models include a covariate (autocovi) to
model the influence of ki neighbors at a distance (hij) from a
focal site i:

autocovi�

Xki

j�1

wijyj

Xki

j�1

wij

The autocovariate, autocovi, is a weighted average of k
values in the neighbourhood of cell i. The weight given to
any neighbouring point j is wij �1/hij where hij is (usually)
the Euclidean distance between points i and j. If the species
is present at point j then yj�1, otherwise yj�0 (Augustin
et al. 1996). This covariate is added to a generalized linear
model (glm) to account for the variation explained by space.
In this case, the observed data are the presence or absence of
the species, Yi which is Bernoulli distributed with a mean
ri. Then the glm is:

logit (ri)�In (ri=1�ri)

�b0�b1 rainfalli �b2 autocovi

Where b0 is the model intercept, b1 and b2 are parameter
estimates for rainfall and the autocovariate respectively, and
rainfalli and autocovi are the values of predictor variables at
the ith site.

In the case of the Dormann et al. data, we expected some
of the variation in species presence to be shared by rainfall
and the autocovariate. To test this hypothesis, we used the
hierarchical partitioning method (Whittaker 1984, Chevan
and Sutherland 1991, Lawler and Edwards 2006) to
estimate the amount of deviance that is: a) explained
independently by the environmental variable (rainfall; RI)
or b) independently by space (the autocovariate; AI), c)
jointly explained by both variables (RJ�AJ), and d)
explained by rain in a simple regression model (RT). As
expected, over the 10 datasets simulated by Dormann et al.,
the proportion of the deviance explained by rain that was
shared by the autocovariate was large ([RJ�AJ]/RT�100�
56943% SD). In contrast, only 691% of the explained
deviance in species distribution could be independently
attributed to rainfall ((RI/Total explained)�100; Fig. 3).

If two predictor variables in the same model overlap in
their contribution to the model, coefficients of both
variables may change radically in comparison to the case

Figure 1. One of ten spatial distributions of the hypothetical
species generated by Dormann et al. (2007). This distribution
shows strong spatial aggregation in the species that is due to both
the environment (in this case rainfall) and spatial processes. Black
and gray shaded points are species presences and absences
respectively.

Figure 2. Degree of spatial autocorrelation, as measured by
Moran’s I, in two environmental variables simulated by Dormann
et al. (2007). Distance is measured as number of cells.

Figure 3. The proportion of variation explained independently by
rain and space and explained jointly by both variables (Shared)
across the ten datasets simulated by Dormann et al. (2007). Error
bars show SE.
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where each variable occurs on its own in a simple regression
model (Wonnacott and Wonnacott 1981). The absolute
magnitude of partial regression coefficients increases with
increasing collinearity (Petraitis et al. 1996). The reason for
the bias observed by Dormann et al. was that information
about species occurrence was shared by the autocovariate
and rainfall. The spatial aggregation effect simulated by
Dormann et al. was large and correlated with rainfall so that
the presence of the autocovariate in the model changed the
estimated coefficient for the effect of rainfall on species
occurrence.

To demonstrate this point further we present two tests.
First, if our argument is true we expect there to be a
negative correlation between the proportion of deviance
shared by rainfall and space (RJ�AJ) and the degree to
which the coefficient for rainfall changes as a function of
including or excluding the autocovariate. Using the 10
datasets simulated by Dormann et al., we found this pattern
to be strongly supported (r��0.95, pB0.0001) (Fig. 4).
If there was little overlap in the deviance explained by
rainfall and space, coefficients for rain did not change with
the addition of the autocovariate. Large multicollinearity
corresponded to shrinkage of rain coefficients by a factor
of �3.

Second, we predicted that if there is, on average, no
correlation between space and an environmental variable,
there should be no apparent change to the environmental
variable parameter estimate. Using the methods of Dor-
mann et al., we simulated binary response data to
construct 10 datasets. Rather than using rainfall as the
‘‘true’’ predictor, in this instance we used the variable
‘‘djungle’’ also presented in Dormann et al. Djungle itself
is not spatially autocorrelated (Fig. 2). We simulated data
so that occurrence of the hypothetical species was
positively associated (b�0.24) with djungle. As in
Dormann et al. we added normally distributed spatially-
autocorrelated error to the logit of the response variable. In
this case parameter estimates for the explanatory variable

from our simulation were higher than expected (mean b̂�
0.29290.06 [SE]). This contrasts sharply with the results
of Dormann et al. who found coefficients of the spatially
autocorrelated predictor variable, rainfall, to shrink by a
factor of five (�0.003/�0.0006; p. 618). By changing
only the spatial structure of the explanatory variable alone
we completely reversed the results reported by Dormann
et al. In this case, the increased value of the environmental
coefficient was due to the fact that the jointly explained
deviance for the autocovariate and djungle was negative
(�1091% SE).

It is important to discuss why the eight other methods
tested by Dormann et al. to account for spatial autocorrela-
tion in binary data do not exhibit the same apparent bias in
parameter estimates. As noted by Dormann et al., only
autocovariate regression and spatial eigenvector mapping
(SEVM) methods account for spatial autocorrelation via
additional explanatory variables. None of the other in-
vestigated methods include spatial structure as fixed
explanatory variables; thus it is not possible to confound
environmental variables with spatial structure in the mean
as these components exist in separate parts of the model
(Kissling and Carl 2008). Not surprisingly, the SEVM
approach also suffers from the potential for space-environ-
ment confounding (Griffith and Peres-Neto 2006). How-
ever, this multicollinearity can apparently be resolved via
extracting the eigenfunctions of the matrix [I-H]C[I-H]
where C and I are the connectivity and identity matrices as
described by Dormann et al. and H is the common hat
matrix (Myers 1990). It is not clear from the text if
Dormann et al. utilized this procedure in the analysis of
their simulated data. Nevertheless, SEVM appears to offer
some promise for avoiding problems of multicollinearity
while retaining fixed explanatory variables to account for
spatial autocorrelation.

In sum, simulations presented by Dormann et al.
revealed a change in the coefficient estimate caused by
adding an autocovariate to a logistic regression model. This
change is no more of a problem however, than it is in any
other statistical model with multiple explanatory variables
that are collinear to some degree (Wonnacott and Wonna-
cott 1981). In the case of Dormann et al., the coefficient
change was particularly severe because data were simulated
in such a way as to result in high collinearity between the
autocovariate and the environmental covariate. Such colli-
nearity is not uncommon in nature so the simulation was
not unrealistic, but it makes it impossible to attribute
‘‘cause’’ to spatial vs environmental variables (Hawkins
et al. 2007). Of course, without manipulative experiments
and/or data simulations, it is impossible to attribute cause
in any case. When variables are confounded (i.e. there is
jointly shared information) researchers can only quantify
this (using some form of hierarchical partitioning) and
design a future experiment that explicitly disentangles the
effects of space and environment.

The importance of behavioural and population
processes

A wide range of processes govern the distribution of species,
many of which are not directly related to environmental

Figure 4. Relationship between the proportion of variation
in species distribution explained by rain that is shared with
space (see text), and the degree to which coefficients of rain shrink
from the logistic to autologistic model (calculated as: log
(b̂(auto covariate)/b̂(glm))). Negative values thus represent coeffi-
cient shrinkage and positive values coefficient expansion.
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variables. Such processes include dispersal limitation, inter-
and intra-specific competition, evolutionary history, terri-
toriality, and conspecific attraction. Dormann et al.
correctly point out that spatial autocorrelation can thus be
seen as an opportunity as well as a challenge (Legendre
1993). However, the authors attributed little discussion to
how the various models and methods reviewed can help to
address questions in behavioural and population ecology.

Autocovariate methods explicitly include aggregation in
predictive models by adding additional covariates (see
second formula above). That is, autocovariates occur in
models as fixed effects that change the mean value of the
response. Other models (e.g. GLMM) deal with aggregation
by including specific sources of variation (autocorrelation)
in a random component of the model for the mean
response, but do not generally change the estimated
mean. By including an autocovariate, i.e. an ‘‘endogenous’’
source of spatial autocorrelation (Currie 2007), it is possible
to identify the potential presence of aggregative processes
that are operating to affect species distributions (Fig. 3).
Unfortunately, because coefficients may not be directly
interpretable in instances of multicollinearity, direct
estimation of the degree to which aggregative processes
occur is limited. However, as noted above, hierarchical
partitioning approaches offer promise for uncovering
instances where substantial independent variation is ex-
plained by space. For example, in recent years, two separate
studies conducted in different regions of North America
reported high degrees of fine-scale spatial autocorrelation in
the abundance of a neotropical migrant warbler, the black-
throated blue warbler (Bourque and Desrochers 2006, Betts
et al. 2006). In both studies this autocorrelation was
hypothesized to be due to conspecific attraction, perhaps
as a result of use of social cues in habitat selection. These
correlative results have now been confirmed experimentally
(Hahn and Silverman 2007, Betts et al. 2008). Including
aggregation in statistical models directly via autocovariates
allows researchers to uncover, and further investigate such
important mechanisms.

Regression prediction versus coefficient estimation

Models developed for prediction may include covariates
whose functional link to the response is not obvious but
which are excellent predictor variables. Quality coefficient
estimation and quality prediction do not necessarily
coincide, and researchers focused on either aspect should
be keenly aware of what metrics should be emphasized in
their regression analysis (Myers 1990, p. 133). Coefficient
bias is an appropriate metric for analyses whose goal is to
accurately describe biological relationships. However, when
the goal is accurate prediction, minimizing prediction error
is most important (Myers 1990). Dorman et al. chose bias
in a parameter estimate to compare models whose objectives
may not be unbiased parameter estimates, but might rather
be prediction success, as in the autocovariate model.

Including spatial autocorrelation in models directly as
autocovariates is thus not only of interest to behavioural and
population ecologists but is likely to be useful for species
distribution modelers (Segurado et al. 2006). Prediction
success of species distribution models may improve with the

inclusion of spatial variables because they explicitly measure
endogenous sources of spatial autocorrelation. In a simula-
tion study, Wintle and Bardos (2006) found that auto-
logistic models had better fit and better predictive
performance than logistic models under a range of sampling
conditions. Indeed, using Dormann et al.’s simulated data,
we calculated the area under the receiver operating
characteristic curve (AUC), a measure of prediction success
(Manel et al. 2001) for two models: a) rain (environmental
variable only), and b) rain�autocovariate (environmental
variable and space). The mean AUC for the autologistic
models was significantly higher than for environment only
models (autologistic: 8591 SE, environment only: 6693
SE, t�6.32, pB0.001). This is consistent with the
findings of Augustin et al. (1996) who argued that
autocovariate models were best suited for prediction in
ecology rather than necessarily being useful for inference.

Interpolation to new environments (Bahn and McGill
2007) can be achieved with the autologistic model if one
utilizes a Gibbs sampling estimation and prediction method
(Augustin et al. 1996, Wintle and Bardos 2006). Such
improved prediction success has been found in subsequent
studies using autocovariate approaches (Hoeting et al. 2000,
Osborne et al. 2001, He et al. 2003, Knapp et al. 2003,
Duff and Morrell 2007, McPherson and Jetz 2007).
However, because such methods tend to be computer
intensive, many studies that use autocovariates do not use
the Gibbs sampler making it difficult to predict indepen-
dent data (Betts et al. 2006). Species distribution modeling
would benefit greatly from the development of a ‘‘user
friendly’’ interface for calculating MCMC-generated auto-
covariates. Such algorithms are becoming more accessible to
ecologists (Wintle and Bardos 2006, McPherson and Jetz
2007).

In summary we argue that the apparent bias caused by
autocovariate approaches reported by Dormann et al. is just
due to shared explained variation between the environ-
mental and spatial variables. Dorman et al.’s parameter
estimates were changed owing to multicollinear variables.
Such joint contributions to explained variation are likely to
occur frequently in nature as many environmental variables
are correlated. However, this problem in autocovariate
models was recognized early on by its developers who
cautioned against its use for inference (Augustin et al.
1996). Thus, if the research objective is increasing predic-
tion success autocovariate approaches are a viable option. If
the primary objective is parameter estimation, other models
(e.g. GLMM) that include space as a random effect may be
more appropriate.
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