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Introduction
Many aspects of how phytoplankton communities are reg-

ulated remain poorly understood, in large part because we lack
critical observational tools. Traditional organism-level sam-
pling strategies are not amenable to high-frequency, long-
duration implementations. Methods such as conventional
microscopic analysis, for instance, are prohibitively labor
intensive and time consuming, whereas newer and more rapid
approaches, such as bulk water optical measurements (e.g.,
chlorophyll fluorescence or light absorption) provide little or

no information about taxonomic composition and other
details that are critical for ecological studies.

Working to overcome aspects of this limitation, we have
developed a series of automated submersible flow cytometers
capable of rapid, unattended analysis of individual plankton
cells (and other particles) for long periods of time. The first such
instrument, FlowCytobot, has proven capable of multimonth
deployments (Olson et al. 2003) that provide new insights (e.g.,
Sosik et al. 2003). FlowCytobot, now in its fourth year of long-
term deployment at the Martha’s Vineyard Coastal Observatory
(http://www.whoi.edu/mvco), is optimized for analysis of pico-
and small nanoplankton (~1 to 10 μm). To complement Flow-
Cytobot, we have now developed Imaging FlowCytobot (Olson
and Sosik 2007), designed to sample natural assemblages of
phytoplankton (and microzooplankton) in the size range ~10 to
100 μm. This is a critical development because phytoplankton
in this size range, which include many diatoms and dinoflagel-
lates, can be especially important in a variety of bloom condi-
tions and as sources of new and export production.

The advent of instruments that permit rapid and auto-
mated microscopic analysis of natural waters, such as the 
laboratory-based FlowCam (Sieracki et al. 1998) and our 
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submersible Imaging FlowCytobot (Olson and Sosik 2007),
promise to revolutionize the ability to sample phytoplankton
communities at ecologically relevant scales. They also, how-
ever, present new challenges for data analysis and interpreta-
tion. For instance, Imaging FlowCytobot can generate more
than 10 000 high-quality plankton (and/or detritus) images
every hour, and it can do so every day for months. This vol-
ume of data precludes manual inspection for cell identifica-
tion as a feasible tool for many applications.

If adequate analysis techniques can be developed for large data
sets of plankton images, the results will bring new insight into a
range of ecological phenomena including bloom dynamics,
species succession, and spatial and temporal patchiness. With
these applications in mind, an initial goal for analysis of image
datasets is to quantify abundance accurately for a wide range of
taxa present in mixed assemblages. To do this requires efficient
and accurate identification of individual plankton images.

This kind of classification problem has been addressed pre-
viously in particular applications involving plankton images.
An important area of focus has arisen in response to availabil-
ity of imaging systems optimized for observations of metazoo-
plankton (> ~0.1 mm); these include systems designed for
underwater measurements of live organisms, such as the Video
Plankton Recorder (VPR) (Davis et al. 1992) and the Shadow
Image Particle Profiling Evaluation Recorder (SIPPER) (Samson
et al. 2001), as well the ZOOSCAN system for automated mea-
surement of preserved samples (Grosjean et al. 2004). Davis
and co-workers (Tang et al. 1998; Davis et al. 2004; Hu and
Davis 2005) have made important contributions in developing
several approaches for rapid analysis of plankton images gen-
erated by the VPR. This group has explored use of image char-
acteristics (or features) such as invariant moments, granulome-
try, and co-occurrence matrices and use of machine-learning
methods including learning vector quantization neural networks
and support vector machines. In another approach, Luo et al.
(2004), working with SIPPER-generated images, also addressed
some of the challenges in including image features (such as
area and transparency) that require accurate detection of the
organism boundary within an image.

Compared to the case for zooplankton, efforts to automat-
ically analyze and identify phytoplankton images have been
more limited, although some recent progress suggests that
new developments are likely to be productive. In an early
demonstration example, Gorsky et al. (1989) showed that sim-
ple geometric properties were sufficient to reliably distinguish
3 species with distinct size and shape. In a similar study,
Embleton et al. (2003) were able to define a neural network to
identify 4 very distinct species from microscopic images of
lake water samples, with accuracy sufficient to resolve sea-
sonal patterns in total cell volume. In another example
involving several dinoflagellate species from the same genus,
Culverhouse et al. (2003) argued that a neural network
approach can achieve accuracy similar to manual identification
by trained personnel. Culverhouse et al. (2006) have proposed

that this be implemented for detection of harmful algal
species, although the ability of their HAB Buoy system to
acquire cell images of sufficient quality remains to be demon-
strated. There has also been considerable effort to develop
species-level automated classification techniques for diatoms
from ornamentation and shape details of cleaned frustules (du
Buf and Bayer 2002 and chapters therein, e.g., Fischer and
Bunke 2002). Most recently, for the special case of Tri-
chodesmium spp. present in colonies large enough for detec-
tion with the VPR, automated analysis has provided striking
ecological and biogeochemical insights (Davis and
McGillicuddy 2006). These examples from previous work
point to the utility of automated image processing and classi-
fication techniques for problems in phytoplankton identifica-
tion, but they all address a relatively narrow scope in terms of
taxonomic range or image type (e.g., cleaned frustules).
Blaschko et al. (2005) highlighted the challenges of moving
beyond this level by presenting results with ~50% to 70%
accuracy for a 12-category (plus “unknown”) image classifica-
tion problem involving a variety of phytoplankton groups.

For adequate ecological characterization of many natural
marine phytoplankton assemblages, the relevant image analysis
and classification problem is broad (taxonomically diverse) and
must accommodate many categories (10-20, or more). Taxo-
nomic breadth necessarily means a wide range of cell sizes and
relevant identifying characters. Moreover, for images collected
automatically over long periods of time, such as from Imaging
FlowCytobot, it is critical that techniques are robust to a range
of sampling conditions (e.g., changes in co-occurring taxa and
variations in image quality related to lighting and focus).

Here we describe a technique to address these challenges by
combining selected image processing methods, machine-
learning based classification, and statistical error correction to
estimate taxonomically resolved phytoplankton abundance
from high-resolution (~1 μm) images. Whereas the general
approach is independent of the particular image acquisition
system, we focus on data collected with Imaging FlowCytobot.
Our approach builds on previous efforts in image classification
for plankton, as well as some other image processing and clas-
sification applications such as face recognition and fingerprint
recognition, while addressing the particular combination of
image characteristics and identification markers relevant for
Imaging FlowCytobot measurements of nano- and microphy-
toplankton in assemblages of highly mixed taxonomy. By
characterizing temporal variability in a natural plankton com-
munity, we demonstrate that our approach achieves the over-
all goal of automatic classification of a wide variety of image
types, with emphasis on morphologically distinct taxonomic
groupings and accurate estimation of group abundance.

Materials and procedures
Our approach involves 5 main steps: 1) image processing and

extraction of features (characteristics or properties), 2) feature
selection to identify an optimal subset of characteristics for multi-
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category discrimination, 3) design, training, and testing of a
machine learning algorithm for classification (on the basis of
selected features as input), 4) statistical analyses to estimate cate-
gory-specific misclassification probabilities for accurate abundance
estimates and for quantification of uncertainties in abundance
estimates following the approach of Solow et al. (2001), and 5)
application of the resulting feature extraction, classifier algorithm,
and statistical correction sequence to sets of unknown images.

Image data sets—The images used to develop, assess, and
demonstrate our methods were collected with a custom-built
imaging-in-flow cytometer (Imaging FlowCytobot) analyzing
water from Woods Hole Harbor. All sampling was done between
late fall and early spring in 2004 and 2005. Here we provide a
brief summary of Imaging FlowCytobot design and image char-
acteristics; details are available elsewhere (Olson and Sosik 2007).

Imaging FlowCytobot uses a combination of flow cytomet-
ric and video technology to both capture images of organisms
for identification and measure chlorophyll fluorescence and
scattered light associated with each imaged particle. Its sub-
mersible and autonomous aspects were patterned after suc-
cesses with the original FlowCytobot (Olson et al. 2003), while
the addition of cell imaging capability and a design with
higher sample volumes are critical for the application to
microplankton. Imaging FlowCytobot uses a customized
quartz flow cell (800 by 180 μm channel), with hydrodynamic
focusing of a seawater sample stream in a sheath flow of fil-
tered seawater to carry cells in single file through a red (635 nm)
diode laser beam. Each cell passing through the laser beam
scatters laser light, and chlorophyll-containing cells emit red
(680 nm) fluorescence. Fluorescence signals are then used to
trigger a xenon flashlamp strobe to emit a 1-μs flash of light,
which illuminates the flow cell after passing through a green
bandpass filter (514 nm). A monochrome CCD camera (1380
by 1034 pixels) and a frame grabber board are used to capture
an 8-bit grayscale image of the corresponding cell. A 10×
microscope objective focused on the flow cell is used to collect
the images, as well as the scattered light and fluorescence from
cells as they traverse the laser beam. This combination of flu-
idics and optical configuration provides images with target
objects in consistent focus and typically having their major
axis oriented with the longer axis of the camera field (i.e.,
along laminar flow lines). As described in Olson and Sosik
(2007), the resulting images (considering the effects of magni-
fication, camera resolution, and cell motion during flash expo-
sure) can be resolved to approximately 1 μm, with the full cam-
era field spanning ~300 by 400 μm. In real time, binary
thresholding and a “blob” analysis algorithm (ActiveMIL 7.5,
Matrox Electronic Systems Ltd.) are used to record only rectan-
gular subregions of the camera field that contain cells or other
objects (along with some adjacent background).

Manual inspection of many images from our Woods Hole
Harbor data set led us to define 22 explicit categories that rep-
resent subjective consideration of taxonomic knowledge, 
ecological perspective, and practical issues regarding group-

ings that can be feasibly distinguished from morphology visi-
ble in the images (Fig. 1; see also Appendix A). Many of the cat-
egories correspond to phytoplankton taxa at the genus level or
groups of a few morphologically similar genera. Diatoms
account for most of these categories: 1) Asterionellopsis spp.; 2)
Chaetoceros spp.; 3) Cylindrotheca spp.; 4) Cerataulina spp. plus
the morphologically similar species of Dactyliosolen such as D.
fragilissimus (all having many small distributed chloroplasts;
category labeled DactFragCeratul in figures and tables); 5)
other species of Dactyliosolen morphologically similar to D.
blavyanus (with chloroplasts typically concentrated in a small
area within the frustule); 6) Ditylum spp.; 7) Guinardia spp. plus
occasional representatives of Hemialus spp.; 8) Licmophora
spp.; 9) Pleurosigma spp.; 10) Pseudonitzschia spp.; 11) Rhi-
zosolenia spp. plus rare occurrences of Proboscia spp.; 12) Skele-
tonema spp.; and 13) Thalassiosira spp. plus similar centric
diatoms. Nondiatom genera are 14) Dinobryon spp.; 15) Euglena
spp., plus other euglenoid genera; and 16) Phaeocystis spp. In
addition to the genus-level categories, we defined several mix-
tures of morphologically similar particles and cell types: 17)
various forms of ciliates; 18) various genera of dinoflagellates
> ~10 μm in width; 19) a mixed group of nanoflagellates; 20)
single-celled pennate diatoms (not belonging to any of the
other diatom groups); 21) other cells < ~20 μm that cannot be
taxonomically identified from the images; plus 22) a category
for “detritus,” noncellular material of various shapes and sizes.

Fig. 1. Example images from 22 categories identified from Woods Hole
Harbor water. Most categories are phytoplankton taxa at the genus level:
Asterionellopsis spp. (A); Chaetoceros spp. (B); Cylindrotheca spp. (C); Cer-
ataulina spp. plus the morphologically similar species of Dactyliosolen such
as D. fragilissimus (D); other species of Dactyliosolen morphologically sim-
ilar to D. blavyanus (E); Dinobryon spp. (F); Ditylum spp. (G); Euglena spp.
plus other euglenoids (H); Guinardia spp. (I); Licmophora spp. (J); Phaeo-
cystis spp. (K); Pleurosigma spp. (L); Pseudonitzschia spp. (M); Rhizosolenia
spp. and rare cases of Proboscia spp. (N); Skeletonema spp. (O); Thalas-
siosira spp. and similar centric diatoms (P). The remaining categories are
mixtures of morphologically similar particles and cell types: ciliates (Q);
detritus (R); dinoflagellates > ~20 μm (S); nanoflagellates (T); other cells
<20 μm (U); and other single-celled pennate diatoms (V).

http://www.aslo.org/lomethods/free/2007/0204a1.pdf
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For development and testing of the analysis and classifica-
tion approach, we compiled a set of 6600 images that were visu-
ally inspected and manually identified, with even distribution
across the 22 categories described above (i.e., 300 images per
category). These identified images were randomly split into
“training” and “test” sets, each containing 150 images from
each category (see Appendix A for full image sets, provided here
to facilitate future comparison with other methods applicable
to this problem). Independent of the training and test sets, we
also inspected every image acquired during randomly selected
periods of natural sample analysis (~27 000 images in sample
volumes ranging from 5 to 50 mL and measured spanning the
period February to April 2005) for manual identification; this
allowed specification of misclassification probabilities under
real sampling conditions and evaluation of error correction pro-
cedures (described below) for accurate abundance estimates.

Image processing and feature extraction—Our first objective
was to produce, for each image, a standard set of feature val-
ues (characteristics or properties) which might be useful for
discriminating among the 22 categories. We specified the stan-
dard feature set by considering characteristics that seem
important for identification of images by human observers
and on the basis of previous successes in related image classi-
fication problems. All imaging processing and feature extrac-
tion was done with the MATLAB software package (version
7.2; Mathworks, Inc.), including the associated Image Process-
ing Toolbox (version 5.2; Mathworks, Inc.). We also incorpo-
rated algorithms described in Gonzalez et al. (2004) and
implemented in the accompanying toolbox Digital Image Pro-
cessing for MATLAB (DIPUM) (version 1.1.3; imageprocessing-
place.com). For each image, the result of all feature extraction
is a 210-element vector containing values that reflect various
aspects of object size, shape, and texture, as described in more
detail below (see Table 1).

The original grayscale image is used to derive some features,
but various stages of image processing are required for others
(Table 1). As a first step, many of the features we calculate

require information about the boundary of the targets of inter-
est (or “blobs”) within an image, so preliminary image pro-
cessing is critical for edge detection and boundary segmenta-
tion. We found that conventional edge detection algorithms
were inadequate for reliable automated boundary determina-
tion over the range of image characteristics and plankton mor-
phologies that we encounter with Imaging FlowCytobot.
Approaches relying on intensity gradients, such as the com-
monly used Canny algorithm, could not be optimized to avoid
artifacts from noise and illumination variations while reliably
detecting challenging cell features such as spines, flagella, and
localized areas that vary from brighter to darker than the back-
ground. For this reason, we turned to a computationally inten-
sive but effective approach based on calculation of the noise-
compensated phase congruency in an image (Kovesi 1999), as
implemented in MATLAB by Kovesi (2005). Phase congruency
is independent of contrast and illumination, and we found
that simple threshold-based edge detection applied to phase
congruency images provides excellent results for a wide range
of phytoplankton cell characteristics (Fig. 2A–C).

After edge detection, we used standard MATLAB functions for
morphological processing (closing, dilation, thinning) and for
segmentation algorithms to define blobs or connected regions
(Fig. 2D). For some feature calculations (e.g., symmetry measures),
images were also rotated about the centroid of the largest blob to
align the longest axis horizontally (compare Fig. 2C and D). Finally,
we used DIPUM toolbox functions to reconstruct a simplified
boundary of the largest blob in each image on the basis of the first
10% of the Fourier descriptors (Fig. 2E) (Gonzalez et al. 2004).

For the largest blob in each field (Fig. 2D), we calculate a set
of relatively common geometric features such as major and
minor axis length, area and filled area, perimeter, equivalent
spherical diameter, eccentricity, and solidity (MATLAB Image
Processing Toolbox, regionprops function), as well as several
simple shape indicators (e.g., ratio of major to minor axis
lengths, ratio of area to squared perimeter). For more detailed
shape and symmetry measures, calculations were done on the

Table 1. Summary of different features types determined for each image, specifying algorithm source and the stage of image pro-
cessing at which the features are calculated. 

Feature type Algorithm or code source Image processing stage No. features No. selected

Simple geometry MATLAB Image  Blob image 18 17

Processing Toolbox

Shape & symmetry DIPUM and custom Simplified boundary 16 16

Texture DIPUM Toolbox Original image (blob pixels only) 6 6

Invariant moments DIPUM & custom Original image, blob image, 22 12

(standard and affine) filled simplified boundary

Diffraction pattern Custom Simplified boundary 100 41

(ring/wedge)

Co-occurrence MATLAB Image Original image 48 39

matrix statistics Processing Toolbox

Total:     210 131

For each type, the total number of features originally calculated is indicated, along with the final number selected for use with the classifier (see text for details)

http://www.aslo.org/lomethods/free/2007/0204a1.pdf
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simplified boundary with a combination of DIPUM functions
and custom algorithms. These detailed features include 1) the
number of line segment ends on the blob perimeter (poten-
tially indicative of spines, for instance); 2) relative cell width
near the left and right edges compared to the midpoint (a pos-
sible indicator for cells with distinctive ends such Ditylum spp.
and Rhizosolenia spp.); 3) mean (absolute and relative to equiv-
alent spherical diameter) and standard deviation of the distances
between the blob centroid and points along its perimeter; 4) the

number of concave and convex segments along the perimeter
[see Loke and du Buf (2002) for development of this idea
applied to diatom frustule characterization]; 5) symmetry met-
rics based on the Hausdorff distance, a measure of how much
2 shapes overlap, as applied to blobs compared with them-
selves rotated 90 and 180 degrees and reflected along the lon-
gitudinal centerline [e.g., see Fischer and Bunke (2002) for
application to diatom frustules]; and 6) triangularity and ellip-
ticity metrics specified by Rosin (2003) on the basis of the first
affine moment invariant of Flusser and Suk (1993).

Various texture properties [e.g., contrast, smoothness, uni-
formity, and entropy as specified by Gonzalez et al. (2004) and
implemented in the DIPUM toolbox] were determined on
original grayscale images, but only considering the pixels
within the largest blob determined as described above. In
addition, following the success of Hu and Davis (2005) with
this technique for zooplankton images, more detailed charac-
terization of texture was included through calculation of gray-
level co-occurrence matrices (MATLAB Image Processing Tool-
box functions) for the original images. As individual features,
we used statistics (mean and range of 4 properties: contrast,
correlation, energy, and homogeneity) of 6 different gray-level
co-occurrence matrixes (pixel offsets of 1, 2, 4, 16, 32, and 64,
each averaged for 4 angles, 0, 45, 90, and 135 degrees).

As indicators of geometric pattern, we also used the 7 invari-
ant moments described by Hu (1962). These are independent of
object position, size, and orientation and were determined with
DIPUM algorithms. In the absence of evidence suggesting the
most appropriate image processing stage for these features, we
chose to calculate them for the original image, the blob image,
and the simplified boundary (filled solid) image.

For the final features, we used digital diffraction pattern sam-
pling (custom MATLAB code), previously shown to be effective
for fingerprint and other pattern recognition problems
(Berfanger and George 1999). We implemented a modified ver-
sion of the method developed by George and Wang (1994),
applied to the simplified boundary images. The approach
involves calculation of the 2-dimensional power spectrum for
an image, and then sampling it to determine the energy distri-
bution across a pattern of wedges and rings radiating from the
origin. We used 48 rings and 50 wedges, each evenly distributed
around one-half of the power spectrum. To prevent low fre-
quencies from dominating wedge signals, the portion of each
wedge near the origin (within an equivalent 15-pixel radius)
was removed. Energy in each ring or wedge was normalized by
the total energy in the image to specify 98 features; 2 additional
values were included as features: the total energy in the power
spectrum and the ratio of energy near the center (within the
low frequency band eliminated from wedges) to the total.

As mentioned earlier, the final standard feature set for each
image corresponds to a 210-element vector. The features for
the 3300-image training set then comprise a 210-by-3300 ele-
ment matrix. Before proceeding with further steps involved
with classifier development or application, all features were

Fig. 2. Image processing stages for example images from several cate-
gories. The original grayscale images (A) are used for determining some
classification features, but different preprocessing is required for others
(see Table 1). Calculation of phase congruency (B) in the original images
is a critical step to produce robust edge detection (C). Through morpho-
logical processing, edge images are converted into blob images (black and
white) and then rotated (D). Finally, the first 10% of the Fourier descrip-
tors are used to reconstruct a simplified blob boundary (E). Both the blobs
(D) and the simplified boundaries (E) are used directly for feature calcula-
tions. Each panel shows corresponding results for the same set of 5 images.
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transformed to have mean = 0 and standard deviation = 1 in
the training set (i.e., each of the 210 rows have mean = 0 and
std = 1). The untransformed mean and standard deviation val-
ues for the training set features are later used for all other feature
transformations (i.e., for test set and unknown image features
before they are presented to the classifier).

Feature selection—Because inclusion of redundant or uninfor-
mative features can compromise overall classifier performance,
feature selection algorithms can be useful to choose the best fea-
tures for presentation to a machine learning algorithm. We
have used the Greedy Feature Flip Algorithm (G-flip) as
described by Gilad-Bachrach et al. (2004b) and available in a
MATLAB implementation (Gilad-Bachrach et al. 2004a). G-flip,
developed specifically for multicategory classification problems,
is an iterative search approach for maximizing a margin-based
evaluation function, where margin refers to a distance metric
between training set instances and decision boundaries between
categories. By selecting a small set of features with large mar-
gins, the G-flip algorithm helps to increase classification gener-
ality (i.e., avoids a classifier overly fitted to training data). For
our 22-category training set with 210 input features, G-flip typ-
ically converges in less than 10 iterations (passes over the train-
ing data), although it does converge at local maxima, so we used
10 random initial points and picked the solution with the over-
all maximum of the evaluation function. With our current 22-
category problem applied to the manually identified training
set (150 images from each category), G-flip selection reduces
our feature set from the original 210 elements down to 131
(Table 1). Only these 131 features are then presented to the clas-
sifier for training, testing, and classification of unknowns.

Classifier design and training—For our multicategory classifi-
cation problem, we use a support vector machine (SVM), a
supervised learning method that is typically easier to use than
neural networks and is proving popular for a variety of classi-
fication problems, including those involving plankton (Luo et
al. 2004; Blaschko et al. 2005; Hu and Davis 2005). SVM algo-
rithms are based on maximizing margins separating categories
in multidimensional feature space. The algorithms we use have
been implemented with a MATLAB interface as the LIBSVM
package (Chang and Lin 2001). LIBSVM uses a one-against-one
approach to the multi-category problem, as justified by Hsu and
Lin (2002). We selected this implementation over others because
of its ease of use in the MATLAB environment and its full devel-
opment for multiclass applications. An additional consideration
is that the LIBSVM package includes an extension of the SVM
framework to provide probability estimates for each classifica-
tion (pc), according to Wu et al. (2004). We use these probabili-
ties for accurate abundance estimates (see details below).

We used a radial basis function kernel, which means the
overall SVM requires specification of 2 parameters, 1 kernel
parameter and 1 for the cost function (penalty parameter for
errors). The optimal values of these parameters cannot be spec-
ified a priori, so we used 10-fold cross-validation on the training
set (G-flip selected features only) for parameter selection,

maximizing overall classification accuracy of the SVM. The
cross-validation approach involves random splits of the training
data into 10 subsets, one of which is used to test accuracy after
training with the other 9; this is implemented as a standard option
in LIBSVM and minimizes effects of overfitting to the training data
during parameter selection. We used a simple brute-force nested
search approach over a wide range of parameter combinations to
find the global maximum cross-validation accuracy.

After parameter selection, we trained the SVM (fixed with
the best model parameters) with the entire training set (all
3300 entries without cross-validation, G-flip selected features
only). The results of this training step determine the final SVM
classifier, which is specific to the selected feature set and the
feature transformation statistics described above.

Statistical error correction for abundance estimates—To extend our
automated classifier to ecological applications that require quanti-
tative determination of group-specific abundances, we followed
the approach of Solow et al. (2001). This involves statistical correc-
tion on the basis of empirically determined misclassification prob-
abilities and permits not only improved abundance estimates
(especially for rare groups that may be subject to large errors from
false-positive identifications), but also estimation of uncertainties
(standard errors) for abundance.

We used manual analysis of all images in randomly selected
field samples (not used as part of the training and test sets),
combined with the automated SVM classifier, to produce a
matrix of classification probabilities, where the diagonal ele-
ments represent the probability of detection for each category
and the off-diagonal elements are misclassification probabili-
ties for each possible combination of categories. This is a 23-
by-23 element matrix: 22 categories plus 1 for “other” images,
i.e., unidentifiable images or species not represented in the 22
explicit categories. We then used this information to correct
abundance estimates for expected misclassification errors,
considering the complete mix of identifications in the sample,
and to calculate approximate standard errors for the abun-
dance estimates as described in Solow et al. (2001). In apply-
ing this approach, we include 1 modification to the example
classification application described by Solow et al. We take
advantage of the probability estimates available from the LIB-
SVM classification results and use only SVM classification
results with relatively high certainty, pc > 0.65; identifications
with lower probabilities are initially placed in the “other” cat-
egory. This leads to lower values of detection probability (diag-
onal element of the matrix) for some categories, but gives bet-
ter overall performance (lower residuals relative to manual
results) for corrected abundance estimates (see details below).
We selected the threshold value of pc = 0.65, by searching for
the value that provided the lowest overall relative residuals
between manual and classifier-based abundance estimates.

Assessment
Classifier performance—We evaluated overall performance of

the final SVM classifier by applying it to the independent test
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set of 3330 manually identified images (i.e., those not used in
features selection, parameter selection, or training). This evalu-
ates the full analysis and classification scheme encompassing
image processing, feature extraction, feature selection, param-
eter selection, and SVM training (including effectiveness of
training set). The classifier provides excellent results for many
genera of phytoplankton (>90% correct identifications for 12
categories), and overall classification accuracy across all 22 cat-
egories in the test set is 88% (Fig. 3A). Only 4 categories have
accuracies <80%: 1 phytoplankton genus, Chaetoceros (79%),
which is challenging because of its morphological diversity;
and 3 relatively nonspecific categories: detritus (68%), nanofla-
gellates (72%), and pennate diatoms (70%). Both specificity
(true positives/classifier total) and probability of detection (true
positives/manual total) for each class follow the same pattern:
80% to 100% for the phytoplankton genera and somewhat
lower for the less precise categories (Table 2, Test set columns).

Image processing—We did not undertake any quantitative
assessment of the effectiveness of the image processing meth-
ods we used, except as evident indirectly through performance
of the final classifier scheme. An important aspect of our
method development, however, involved visual examination
of the results of image processing stages as applied to thou-
sands of example images drawn from the range of categories
in our training and test sets. These inspections were used sub-
jectively to optimize details of the processing scheme, for
example, the choice to use phase congruency calculations for
acceptable edge detection results, use of the first 10% of the
Fourier descriptors for boundary reconstruction, and selecting
the size of structuring elements (2 to 5 pixels) used for mor-
phological processing.

Feature and parameter selection—We assessed the importance
of our feature selection step by comparing classification test
results (Fig. 3A) to those achieved with a scheme that omits 

Fig. 3. Automated classification results for 22 categories in the independent test set of images (i.e., images not used for classifier development) (A). Val-
ues shown here represent the percentage of images manually placed in each category that were also placed there by the SVM classifier. Percent improve-
ment in classification rate due to feature selection (B) was determined by comparing test results in (A) with those from a separate classifier trained with
the complete 210 feature set. Categories appear in the same order as images labeled A–V in Fig. 1; see text for detailed explanation of category labels.
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feature selection (Fig. 3B). In other words, the same SVM details
and the same training images were used, but the SVM training
was conducted with all 210 features instead of the reduced set
of 131. The overall correct classification rate on the test set was
only 2% better with feature selection (88% vs. 86% accurate
identification); however, some category-level accuracies were
substantially better with feature selection (Fig. 3B), most
notably “other cells <20 μm,” for which the rate increased from
72% to 80%. Although the overall advantage of feature selec-
tion on correct identification rate is relatively modest, it does
provide improvement in performance for almost all categories
and adds only modest computational cost.

Another potential advantage of feature selection is reduc-
tion in the number of features that must be calculated for each
unknown image. For large datasets, this can affect overall
computation time and provide some insights into which fea-
ture types may be worth further investigation or refinement.
Feature selection for our 22-category training set showed that
all the types of features in our full 210-element set were useful
for some aspect of classification, but that within certain feature

types not all the elements were needed (Table 1). For instance,
all but the fifth invariant moment was retained for the origi-
nal image, but only the first was selected for the case of the
simplified boundary image, and moments 4, 5, and 7 were
eliminated for the blob image. For co-occurrence matrix sta-
tistics, contrast and correlation values were consistently cho-
sen for all pixel offsets, but only about half of the energy and
homogeneity values were needed; and for the ring-wedge dif-
fraction pattern sampling, just over half the wedges were cho-
sen, with these spread over the full pattern, but only 13 (of 48)
rings were retained, with these concentrated near the center.
Exact details of which features are chosen change slightly with
different realizations of the G-flip algorithm, but these general
trends are persistent, suggesting that in our initial feature set
we have oversampled the diffraction patterns and co-occur-
rence matrix properties.

Compared with feature selection, SVM parameter selection
had a larger impact on accuracy of the final trained SVM clas-
sifier. Results of grid search near the accuracy maximum show
that >10% changes in cross-validation accuracy occur with
100-fold changes in kernel parameter and cost function
parameter (Fig. 4). Because there is no a priori way to choose
these parameters, the parameter selection step is critical for
optimal results. There may be more elegant and faster search
approaches for parameter selection, but we opted for a nested
brute force search because of its simplicity, near guarantee of
locating the global maximum, and because the added compu-
tational time is relatively minor (since this search need only
be done once, after feature selection and before training).

Table 2. Specificity (Sp) and probability of detection (Pd) for
each of the 22 categories during application of the SVM classifica-
tion scheme to the image test set, and also to a series of field sam-
ples for which every acquired image was included in the analysis. 

Test set Complete field samples
all P all P P > 0.65 only

Sp Pd Sp Pd Sp Pd

Asterionellopsis 0.93 0.91 0.28 0.75 0.54 0.59

Chaetoceros 0.85 0.82 0.93 0.70 0.98 0.56

Cylindrotheca 0.91 0.96 0.77 0.81 0.94 0.70

DactFragCeratul 0.97 0.95 0.69 0.99 0.91 0.96

Dactyliosolen 0.97 0.94 0.97 0.94 1.00 0.90

Dinobryon 0.97 0.95 0.74 0.97 0.95 0.96

Ditylum 1.00 0.98 0.71 0.83 1.00 0.67

Euglena 0.79 0.87 0.21 0.88 0.44 0.75

Guinardia 0.84 0.88 0.97 0.75 1.00 0.59

Licmophora 0.94 0.89 0.34 0.75 0.95 0.66

Phaeocystis 0.95 0.93 0.35 0.79 0.75 0.69

Pleurosigma 0.90 0.95 0.61 1.00 0.89 0.94

Pseudonitzschia 0.91 0.91 0.13 0.67 0.27 0.50

Rhizosolenia 0.81 0.90 0.64 0.80 0.98 0.60

Skeletonema 0.91 0.86 0.14 0.60 0.23 0.43

Thalassiosira 0.81 0.89 0.43 0.82 0.76 0.63

ciliate 0.81 0.81 0.42 0.79 0.63 0.62

detritus 0.75 0.67 0.59 0.42 0.78 0.18

dino 0.79 0.81 0.65 0.79 0.79 0.50

flagellate 0.76 0.69 0.19 0.66 0.34 0.45

other < 20 μm 0.66 0.72 0.92 0.73 0.92 0.73

pennate 0.77 0.69 0.24 0.70 0.41 0.43

Results for the field samples are shown both for the case where all identi-
fications are included, regardless of the maximum category probability,
and for the case where only instances with pc > 0.65 are considered.

Fig. 4. Grid search results showing 10-fold cross-validation accuracy (%)
for various combinations of SVM parameters, emphasizing the impor-
tance of optimal parameter selection for classifier performance.
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Abundance estimation—Although the classifier performance
on the test set was excellent, some errors or misclassifications
are unavoidable. These errors can be significant for abundance
estimates in natural samples, both because error rates tend to
be higher when considering all images (not just those that
manual inspectors find readily identifiable) and because abun-
dance estimates for rare groups are very sensitive to effects of
even low rates of false-positive classification associated with
images from more abundant categories. Our evaluation of the
classifier considering manual identification of all images
(~8600) in a randomly selected set of natural samples showed
that specificity and probability of detection decreased for
almost all categories, in some cases dramatically, compared
with the test set results (Table 2). As expected, consideration of
only classifications with category probabilities above the
threshold pc = 0.65 (i.e., ignoring relatively uncertain identifi-
cations) resulted in decreased probability of detection for all
categories but increased specificity, in many cases to levels
near those achieved with the test set (Table 2).

We examined misclassification errors in more detail through
the classification probability matrix calculated from the 8600-
image field data set (Fig. 5). As expected given the high overall
performance of the classifier, misclassification rates (off-diagonal
elements) were always much lower than correct classification

rates (diagonal in Fig. 5). This analysis emphasizes that certain
types of misclassification are more common than others, such
as between detritus and ciliates or nanoflagellates and other
cells <20 μm or Asterionellopsis and Chaetoceros (both chain-
forming diatoms with spines). Many elements of the matrix are
zero, indicating that those types of misclassification did not
occur in the analysis with this data set.

As described by Solow et al. (2001), the classification prob-
ability matrix is a property of the classifier and not dependent
on properties of unknown samples (such as relative abun-
dance in different categories), so once the matrix is deter-
mined with sufficient accuracy it can be used in a straightfor-
ward manner to correct initial classifier-predicted abundances.
We evaluated this approach at 2 levels. First, we used the 8600-
image field set to compare category-specific abundance esti-
mates determined manually and with the error-corrected clas-
sifier. Then, we applied the same approach to a separate field
data set of randomly selected samples containing nearly 19 000
images. The initial 8600-image set was used to calculate the
probability matrix, but this latter set was not used in any
aspect of the classifier development, training, or correction
scheme, thus ensuring a completely independent test. Both
field data sets span a range of sampling conditions over a 
2-month period in February to April 2005.

Fig. 5. Matrix of classification probabilities for the 22 image categories, derived from analysis of all images in a series of natural samples (~8600 images).
Probability values range from 0 to nearly 1 and are colored with a logarithmic mapping to emphasize both the high values along the diagonal (probabil-
ity of detection for each category) and the low values off diagonal (category-specific misclassification probabilities). White elements correspond to P = 0.
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Use of the probability matrix shown in Fig. 5 results in 80%
of the corrected classifier-based abundance estimates falling
within 2 standard errors of the manual results and no evident
biases between the manual and classifier-based results for any
categories, in either field data set (Fig. 6). The few cases with
differences outside 2 standard errors still show no bias and are
concentrated in 1 phytoplankton genus (Chaetoceros, which is
challenging because its morphological diversity) and in sev-
eral relatively nonspecific categories: “detritus,” “nanoflagel-
lates,” and “other <20 μm.” As expected, categories with very
low abundance in our samples (e.g., Ditylum) have higher rel-
ative errors than some of the more abundant categories; rela-
tive standard errors are also higher for categories that tend to
get confused with more abundant ones, such as Skeletonema,
which has modest misclassification rates with the more abun-
dant (in these samples) Guinardia and Chaetoceros (see Fig. 5).
Even when standard errors are high, however, the estimates
are all without bias compared to manual counts (Fig. 6). If we
compare these overall results to the case with uncorrected

classifier abundance, summed squared residuals between clas-
sifier and manual estimates (i.e., residuals about the 1:1 lines
in comparisons similar to those shown in Fig. 6) increase by 
3-fold or more for most categories (7-fold mean across all cat-
egories), emphasizing the importance of the error correction
step for abundance.

Application to time series studies—The field data used in the
assessments discussed above were randomly selected from a
much larger data set from trial deployment of Imaging Flow-
Cytobot at the Woods Hole Oceanographic Institution dock
during February to April of 2005. Because there were more
than 1.5 million images collected over the 8-week period, the
complete data set provides an opportunity to assess the poten-
tial ecological applications of our automated classification
method. Imaging FlowCytobot was connected to power and
data communication systems analogous to those at the
Martha’s Vineyard Coastal Observatory, and all control and
data acquisition were fully automated. Images were processed
and classified as described above, and category-specific con-
centrations (and associated standard errors) were determined
with 2-h resolution. Averaged over the full data set, computa-
tional time (on a single 3.2-GHz Pentium-based computer)
was roughly equal to the duration of the time series, with
image processing and feature extraction dominating.

Historical observations in waters near Woods Hole point to
late winter/early spring as a period of transition in the phyto-
plankton community. Blooms of large-celled species and
chain-forming diatoms are more commonly found in fall and
winter than at other times of year (e.g., Lillick 1937; Riley 1947;
Glibert et al. 1985). When analyzed with the approach
described in this article, our Imaging FlowCytobot observa-
tions capture this seasonal transition in unprecedented detail.
In late February, the most abundant nano- and microphyto-
plankton (besides the mixed class of ~10- to 20-μm rounded
cells that cannot be taxonomically discriminated from our
images) were chain-forming diatom species, especially Chaeto-
ceros spp., Dactyliosolen spp., and Guinardia spp., which were
present at approximately 20 chains mL–1, 15 chains mL–1, and
10 chains mL–1, respectively (other taxa were at levels of 3 cells
mL–1 or less). By mid-March, the previously abundant diatom
genera had declined by ~1 to 3 orders of magnitude, to near
undetectable levels. The full 2-h resolution time series empha-
size the power of these observations for exploring detailed
ecological phenomena, such as species succession (Fig. 7). The
dominant diatoms all declined over the 2-month sampling
period, but they responded with very different temporal pat-
terns. For example, Dactyliosolen spp. and Guinardia spp. started
at similar concentrations, but Dactyliosolen spp. declined
roughly exponentially over the entire period, whereas Guinar-
dia spp. persisted longest and then declined most abruptly in
early April (Fig. 7). The full time series are also rich with even
higher frequency detail, such as fluctuations associated with
the complexity of water masses and tidal currents in Woods
Hole Harbor (e.g., Fig. 8).

Fig. 6. Comparison between classifier-based counts (after correction for
classification probabilities) and manual counts (from visual inspection of
images) for selected categories chosen to span the range of abundances
and classification uncertainties evident across all 22 categories and across
the range of natural sample conditions encountered during the time
series shown in Fig. 7. All points are shown with error bars indicating ± 1
standard error for the classifier estimates (in some cases these are as small
as the plot symbols). Red points (asterisks) indicate samples used in the
generation of the classification probability matrix (see text for details),
and blue points (solid circles) are completely independent samples, each
selected randomly from within week-long intervals of the full time series.
The sample volumes examined for these comparisons ranged from 5 to
50 mL, providing a range of abundances and associated relative errors.
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Discussion

Our goal was to develop an analysis and classification
approach to substantially increase ecological insight that can
be achieved from rapid automated microplankton imaging
systems. Our experiments and analyses are extensive enough
to show that our approach meets the challenge of many-category
(>20) classification, with unbiased abundance estimates for
both abundant and rare categories. Furthermore, the extent of
our training, testing, and field evaluation data ensures that the
approach is robust and reliable across a range of conditions
(i.e., changes in taxonomic composition and variations in
image quality related to lighting and focus). The training and
test sets were developed from many different sampling dates
over more than a year, and the example field data span 8 weeks
of continuous sampling when species composition was chang-
ing dramatically (Fig. 7).

The performance of our automated classifier exceeds that
expected for consistency between manual microscopists
(Culverhouse et al. 2003) or achieved with other automated
applications to plankton images (e.g., Culverhouse et al.
2003; Grosjean et al. 2004; Blaschko et al. 2005; Hu and
Davis 2005; Luo et al. 2005). The approach provides unbi-
ased quantitative abundance estimates (and associated
uncertainty estimates) with taxonomic resolution similar to
many applications of manual microscopic analysis to plank-
ton samples. When coupled with an automated image acqui-
sition system, such as Imaging FlowCytobot, the advantages
of our approach over manual identification are striking. Not
only can we extend interpretation to include many more
images, but the effort can be sustained indefinitely, provid-
ing access to information at scales of variability (e.g., the full
spectrum from hours to years) that have been inaccessible
with traditional methods.

Regarding taxonomic resolution, the set of 22 categories we
identified in this work is only one way to parse our image data
set. Although there are physical limits to the morphological
detail that can be resolved in the images we used, other group-
ings or finer taxonomic detail could still be considered in
future work depending on the ecological context and the
expertise of personnel developing the necessary training sets.
For instance, more detailed investigation of wintertime
diatom bloom dynamics at our study site may require that the
Chaetoceros genus be subdivided according to species with
characteristic spine morphology evident in the images. We
also anticipate that it will be necessary to add new genera to
the list of categories as we build up longer time series of obser-
vations in waters of the New England continental shelf. For
other study sites, new categories will certainly be necessary.
Because of the diversity of categories we have already incor-
porated, the image processing and feature calculation meth-
ods we have used will likely be adequate for a range of changes
in categories to classify. Similarly, although new classifier
training must be carried out with any change in categories,
the classifier development framework we have described can
be readily applied to new category sets, as well as to new fea-
ture sets if necessary. Addition of new categories or any other
change in the classifier will require routine updating of the
classification probability matrix.

Our time series during the late winter diatom bloom near
Woods Hole emphasize the range of temporal scales accessible
in our observations (Figs. 7 and 8). This is most striking for
high-abundance cell types. It is important to note that, as with
any counting method, abundance estimates for rare cell types
will not be statistically robust at small sample volumes. For
our system, this statistical limit can be overcome at the

Fig. 7. Time series of diatom chain abundances observed during a 2-
month deployment of Imaging FlowCytobot in Woods Hole Harbor dur-
ing 2005. Automated image classification was used to separate contribu-
tions at the genus level; shown here are Chaetoceros spp. (green +),
Dactyliosolen spp. (blue �), and Guinardia spp. (red x). For each abun-
dance estimate, we have an associated standard error, although these are
not shown here for clarity; see Fig. 8 for representative values.

Fig. 8. Expanded view of a single week (end of February) of the time
series in Fig. 7, emphasizing the ability of automatically classified Imaging
FlowCytobot observations to capture variability related to water mass
changes with semidiurnal tidal flows in Woods Hole Harbor. Standard
errors for the abundance estimates (shown only once per day for clarity)
are small compared to the variations evident at tidal frequencies. As in Fig. 7,
green (+), blue (�), and red (x) correspond to abundances of Chaetoceros
spp., Dactyliosolen spp., and Guinardia spp. chains, respectively.
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expense of temporal resolution. In other words, we can pro-
vide abundance estimates for rare species, but not reliably at
2-h resolution. For many ecological challenges, this tradeoff is
acceptable. For low-level detection of harmful algal species, for
instance, it may be both practical and more than adequate to
provide abundance estimates with daily resolution.

We have recently begun deployments of the existing Imag-
ing FlowCytobot at the Martha’s Vineyard Coastal Observa-
tory, located in 15 m of water on the New England continen-
tal shelf near Woods Hole. This study site is where we have
operated the original FlowCytobot (for pico- and small
nanoplankton observations) for several years. With these two
instruments, FlowCytobot and Imaging FlowCytobot, now
side-by-side, we can make high temporal resolution observa-
tions of the entire phytoplankton community, ranging from
picoplankton to chain-forming diatoms, and do so for
extended periods (months to years). As exemplified by the
time series presented in this article (Figs. 7 and 8), the auto-
mated classification procedure we have developed is critical
for exploiting the full potential of these observations. The
coupled instrument and analysis system can provide new
insights into ecological processes and responses to environ-
mental perturbations in natural plankton communities.

Comments and recommendations
When combined with sampling strategies enabled by

instruments such as Imaging FlowCytobot, our automated
image processing and classification approach is reliable and
effective for characterizing phytoplankton community struc-
ture with high taxonomic and temporal resolution. We expect
that critical elements of the approach are general enough for
application to plankton images from other sources, but future
work is needed to evaluate this prospect quantitatively and
identify any aspects that may require adaptation.

As with any supervised machine learning method, expert
specification of training and test data are a critical aspect of
our approach. The investment required for expert identifica-
tions is also by far the limiting factor in applying our
approach to other data sets; steps dealing with aspects such as
feature selection and optimization and training of the Support
Vector Machine are straightforward and take negligible time
(typically a few hours of automated computations) in com-
parison. In this article, we describe application to one set of
specified categories, acknowledging that other groupings or
more taxonomically detailed categories can be justified for
specific ecological questions or by more experienced taxono-
mists. Undoubtedly, different categories will be required for
other study sites. Our experience with development of the
framework we describe here suggests that it will be readily
adaptable to specification of different image categories. It was
not necessary to modify the approach, for instance, as we
added categories to the training set over the period of its
development. New features can also be readily added if new
knowledge or expert advice recommends them.

Use of phase congruency calculations for edge detection is
an aspect of the image processing sequence that is particularly
important for reliability and generality of our approach. This
step is also one of the most computationally demanding, so
future efforts to make our automated classification approach
truly real time (e.g., on board a remotely deployed instrument
with limited communication bandwidth to shore) should
focus on hardware advances or acceptable algorithm alterna-
tives for this calculation.

For ecological problems that require quantifying abun-
dance accurately for a wide range of taxa present in mixed
assemblages (e.g., including rare categories), the investment in
developing the full category-specific classification probability
matrix is critical for unbiased results. Although our experi-
ments show that it is acceptable to apply a single realization
of the probability matrix over a large data set spanning 2
months of data collection, future work is needed to determine
how general the probabilities are across changes in sampling
conditions. It is possible, for instance, that the likelihood of
the classifier confusing certain categories changes with per-
formance of the image acquisition system (e.g., more likely if
focus is poor). Implementing a strategy to update the proba-
bility matrix is simple in concept, requiring only periodic
manual inspection of a small subset of images.

For the case of Imaging FlowCytobot deployed at a cabled
coastal ocean observatory, the approach described here is
ready for application to targeted ecological studies, such as
investigation of bloom dynamics and patterns and causes of
species succession on the New England continental shelf. As
discussed above, expansion into other environments is not
limited, but will require new training and test sets to accom-
modate taxonomic groups not included here.
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