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1 Numerical Approach

The first question we address when discussing supraglacial lake drainage is whether there
are favorable conditions for crack formation. We use the stress intensity factor at the crack
tip to determine whether critical crack propagation will occur for a given set of parameters,
and calculate the crack length if there is propagation. The stress intensity factor, K., at

the tip of the crack is a linear combination of the individual stress intensities:
Kot = K7+ K1 + Kw (1)
where the terms on the right hand side of the equation are expressed as:

KT,I,W = 0tiwVT-Z (2)

Thus, K. is a function of the deviatoric (longitudinal) stress o; (assumed to be independent
of z), the ice overburden pressure 0; = —p;gz, as well as the added stress of the water filling
a crack o, = pwg[z — dy,]. Here, z is the crack depth, pis density, and d,is the depth to the

top of the water in the crack. When Kj,is greater than the fracture toughness of the ice, the
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crack will critically propagate. For simplicity we use a single value for the fracture toughness
of 0.1 MPa [Hooke, 2005], which strictly speaking is a function of the temperature. However,
we feel this is a reasonable approximation, as the fracture toughness within the bulk of the
ice sheet will not vary greatly.

Because of the dependence of equation (1) on z, critical crack propagation requires an
initial (small) crack to be present in order for K, to exceed the fracture toughness. We
have calculated the depth an initial crack must reach before it starts to critically propagate
for the water-filled condition as a function of the differential stress which varies widely in
the ice sheet from tensile to compressive. We find this initial depth is typically less tha 1 m,
but under cases of neutral differential stress, or slight compression, initial cracks of only 4-7
m are necessary (Figure S1). This initial flaw length is frequently observed in many regions
of the Greenland Ice Sheet in the form of dry crevasses. These dry crevasses may be created
far from supraglacial lakes in areas of overall tension, and once advected into the lake basin
may serve as the initial cracks needed for water-filled propagation.

The depth of a crack can then be determined as a function of the fracture toughness,
water content, and the longitudinal stress. This crack length is unbounded in the case of
water-filled cracks because Ky and K are of opposite signs, and Ky is always greater than
Ky (Figure S2). The length of the crack (z) is then used to calculate the opening geometry

of an edge crack after Weertman [1996]:
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where stress, o, is expressed as:
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The derivation of these equations is outlined by Weertman [1973, 1996]. D(y) is the
displacement of one side of the crack with respect to the center line as a function of the
depth, y. « is (1 — v), where v is Poisson’s ratio and a value of 0.3 is used for ice. The
depth (d,,) to the top of the water in the crack as measured from the surface can be varied,
and d,, = 0 for water filled cracks. The shear modulus for ice (x) has been found to vary
based on loading rates, grain size, and temperature, none of which are constrained by our
model. We use 3 different values across the known range for the shear moduli (3.9, 1.5, and
0.32 GPa) to determine the sensitivity in our model to this variable | Vaughn, 1995|. The
density of water (p,,) and ice (p;) are 1000 and 920 kg/m?, respectively. g is the gravitational
constant taken here at 9.78 m/s?>. We ignore uncompacted snow or firn at the surface of
the ice sheet as it is likely a negligable component for the lake bottom environment in the
Greenland ablation zone. Two example calculations are shown in Figure S3, one for the dry
case (z = d,,) and one for a completely water filled case (d,, = 0).

Because the general shape of a water-filled crack does not vary significantly with depth,
we approximated it as a channel with parallel sides in the calculations of lake drainage time.
The mean opening of the crack is used for this calculation, and is determined by dividing
twice the integral of D from 0 to z by z. The Reynolds number for this system is calculated
to be on the order of 10° and thus falls in the turbulent regime. We follow the approach of
White [1974] to estimate the turbulent flux of water through a channel with a mean opening
determined as above (Figure S4). Using the flux the drainage time can be calculated for any
lake of a known volume. If a crack is positioned underneath a supraglacial lake and is to
remain water-filled throughout its propagation, then the cross sectional area of a conical lake
must be at least equal to the cross-sectional area of the crack. There is a simple geometric

relationship between the area of the crack and the minimum mean lake diameter necessary



to keep the crack water-filled:
lake diameter > /400 - A (5)

Where A is the cross-sectional area of the crack, which can be calculated by integrating
equation (3) over the entire length of the crack and multiplying it by two, to account for
both sides of the crack. Using the above equation a minimum lake size can be estimated for
a given ice sheet thickness (as shown in Figure 4). We also calculated drainage times for
turbulent pipe flow, used to similate a moulin, which is a possible drainage mechanism for
supraglacial lakes. The moulin drainage (pipe flow) represents a volume per time calculation,
while the calculation for a crack drainage (channel flow) is a 2-D flux. Thus, in this case we
use lake volume rather than lake area to estimate drainage time. We note that channel flow

is always faster, due to the larger frictional forces associated with the pipe walls.

2 Satellite Imagery

Daily MODIS images collected throughout the 2006 melt season were used to determine the
maximum summer lake extent of 1300 lakes across our study area. Lake boundaries were
estimated by thresholding the ratio of the blue to the other visible channels. Lake locations
were tracked through time and transient features were discarded (e.g., single-day false detec-
tions caused by clouds). Daily lake extent was then tabulated for each lake throughout each
summer allowing us to determine the maximum lake surface area. Following our discussion
in the main text, we prescribe an aspect ratio (mean surface diameter:maximum depth) of

100:1 to then calculate the water volume.



3 Field Observations

Although it is impossible to measure the shape and depth of many of these crevasses at depth
in the field, the observations we do have support the validity of the Weertman model for
opening geometry, as well as our calculations of the crack volume and our conclusions about
modeling lake drainage through channel flow. Areas of the ice sheet that had previously been
submerged beneath a supraglacial lake display a distinctive ‘egg-carton’ like appearance on
the surface, due to the melting processes that occur at the lake bottom. We have observed
many crevasses that are now frozen closed (healed) running across the ice sheet through
areas displaying these egg-carton textures (Figure S5), indicating that they were once at the
bottom of a lake. It is easy to see these crevasses because the ice filling them has a distinctly
bluer color than surrounding lake bottom material. It is common for these crevasses to
be longer than 1 km in their horizontal dimension, and they maintain a constant opening
width across their entire length. Healed crevasses also typically have thin lines of bubbles
indicating that they re-froze from the outside in.

Ice canyons, which are erosional features formed from surface meltwater flow, can be tens
of meters deep, and provide 3-D observations of these healed crevasses (Figure S6). In these
cases we see that the dilation of the crevasses remains remarkably constant in the vertical
as well as horizontal dimension, consistent with a model in which the crack was water filled
during its formation (Figure S3). The ‘healing’ process for these crevasses is ideal because
it prevents them from being subjected to viscous flow and deformation processes, and ‘fos-
silizes’ the shape the crevasse has when it initially forms (i.e., parallel sides, constant opening

width, etc.).
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